First off, as previously mentioned, there are third and higher derivatives in physics. However, you are completely correct that they are rare-- jerk is occasionally used but beyond that I've never really seen a problem using snap (jounce), crackle or pop; perhaps their rare use is why they were named after a cereal slogan. I do not know exactly why they are generally trivial, but I do have a guess (of course, nobody can know exactly why something in physics exists).
I assume that the answer has something to do with energy. Energy underlies nevery concept in physics-- whether you are dealing with classical mechanics, quantum mechanics or relativity. Work (a concept extremely closely related to energy) is very easy to express in terms of force, a quantity associated with acceleration, the second derivative of position (W=F⋅d for a constant force or ∫F⋅dx for a varying force). Now, I could express this in terms of yank (Y, mass times jerk, the third derivative of position) as W=F0⋅d+Yt⋅d for a constant yank and force not varying wrt d, and in the general case W=∫∫Ydt⋅dx. I find the equation in terms of force much more appealing to use, don't you agree? In fact, you can also express kinematics for a constant jerk, but at that point I think I'd rather use calculus.