Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why not just collide particles for fusion?

  1. Dec 3, 2010 #1
    why do scientist insist on confinement as the way of producing power, not something like colliding accelerated particles together?
    and is polywell really the best possible method to produce fuion power as the new trend suggests?
  2. jcsd
  3. Dec 3, 2010 #2
    Because it's been tried and simply doesn't work well enough to achieve net energy gain. Too few particles will fuse and the energy given to all the others is lost. You can easily get fusions and lots of neutrons, but you cannot get net gain.
  4. Dec 3, 2010 #3


    User Avatar
    Gold Member

  5. Dec 6, 2010 #4
    ok i get it. but i have some questions about the polywell.

    http://en.wikipedia.org/wiki/Polywell" [Broken]

    how does the same magnetic field that confines electrons be used to concentrate positive ions, they most probably have the same path towards the center. so, shouldn't the field be repelling the positive ions?
    also, stopping ions completely by deceleration, and then reaccelarating again, wouldn't this have high braking radiation?
    Last edited by a moderator: May 5, 2017
  6. Dec 6, 2010 #5


    User Avatar
    Gold Member

    It has been shown that electrons so confined set up a virtual cathode in the middle of the device. Thus positive ions constantly accelerate toward the cathode in the middle - from all directions.

    No, as i recall the theory is that the higher mass species (ions) don't radiate significant power due to acceleration. However, the electrons do radiate if they get hot (many KeV), and it has been shown that that case they will radiate away the equivalent of a significant fraction of the fusion power output.* In an accelerator device like the Polywell, as opposed to a thermal device like NIF's laser implosion or a Tokamak, escaping radiation is a problem. One of the debates about the Polywell involves the temperature the electrons will reach, with advocates taking the position that electrons can stay relatively cold as you might imagine.

    *This is another reason high atomic number fusion materials present more problems (Li, Boron,...) for practical reactor: for every ion there are even more electrons (in a neutral plasma) to radiate away even more energy.
    Last edited by a moderator: May 5, 2017
  7. Dec 6, 2010 #6
    i understand that. but my question is- the magnetic field won't be exerting any fprce on the electrons, unless they move. so i guess they need to be introduced at some velocity such that magnetic force on them makes them end up in the center. now positive ions when moving towards this center, can't all be parallel to the magnetic field(which is pretty complex and varying in itself), so wouldn't they experience a force opposing them?
    can't we use the escaping radiation for power? isn't that how tokamaks work?
  8. Dec 6, 2010 #7
    With the energy from the radiating ions and electrons (photons), the most from this you can recover is about 40% from a standard steam cycle. It's a losing game, energy wise.
  9. Dec 6, 2010 #8


    User Avatar
    Gold Member

    You may want this thread:

    Here's the paper on the limitations with acceleration based fusion schemes.
    "[URL [Broken] limitations on plasma fusion systems not in thermodynamic equilibrium
    A hint of the content, from the author's acknowledgements:
    Yet each man kills the thing he loves,
    By each let this be heard,
    Some do it with a bitter look,
    The coward does it with a kiss,
    The brave man with a sword!

    - Oscar Wilde​

    Well the problem lies in using the energy put into the system to effectively create fusion in the plasma, and not to introduce energy solely for the purpose of throwing it against a wall as heat, most of which must then be lost.
    Last edited by a moderator: May 5, 2017
  10. Dec 10, 2010 #9
    you know, unless you are yoda you could directly answer my question.
  11. Dec 10, 2010 #10


    User Avatar
    Gold Member

    You've been down there, Neo. You already know that road (simple answers without understanding). You know exactly where it ends. And I know that's not where you want to be.
  12. Dec 12, 2010 #11
    So, the ion's have a V|| and a V_|_, the ion's would experience a force in a direction orthogonal to both the magnetic field B and V_|_.

    What do you mean by "a force opposing them"?
  13. Dec 13, 2010 #12
    i mean that since negatively charged ions are going to the center under the particular direction of motion , positive ones should pretty much go in the opposite way
  14. Dec 13, 2010 #13
    I think the polywell operates on a principle somewhat similar to a Penning trap. My understanding is that the field coils generate a cusp and have a positive charge, an electron cloud is contained within the cusp. This configuration has a negative charged center and positively charged field field coils and forms a potential well. The plasma is injected and ions oscillate in the well. I'm interested to see how well the theory behind the design works in practice.
  15. Dec 13, 2010 #14


    User Avatar
    Gold Member

    The electrons are held by containment inside a magnetic field produced by current coils, which have no electrostatic charge themselves. The motivation for the Polywell idea is that theoretically it should be much easier to contain electrons via magnetic field than relatively massive ions as is done with Tokamaks, since the spiral radius of motion is so much smaller for a given field strength and particle charge.
    [tex]\[R = \frac{{mv}}{{\left| q \right|B}}\][/tex]
  16. Dec 14, 2010 #15
    Perhaps the 2nd para. of the WP article is in error. I'm no expert on the Polywell myself.
  17. Jan 27, 2011 #16


    User Avatar

    Staff: Mentor

    The magnets of the Polywell confine Electrons in the center of the device. This containment is far from perfect however. Many electrons will escape at the cusps of the device. IE in the center of the magnets and where the magnetic fields of each magnet meet. However, the grid itself (The shell that contains the magnets) is charged to a high positive charge that attracts any Electrons that escape. Depending on the design, a large amount of these electrons can be attracted back inside so that the losses of the electrons are very minimal.

    Now, this mass of electrons inside the device forms a virtual cathode. This cathode attracts positive ions which are the fuel to the center of the device where they constantly move back and forth through the center until they collide and hopefully fuse. The fused material is captured and converted into electricity.

    Note that there are many things to overcome here, no matter how optomistic the researchers are that are building it. We'll just have to wait and see if it works.
  18. Jan 28, 2011 #17


    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook