Why RMS for the average voltage in AC current?

Click For Summary
SUMMARY

The discussion centers on the distinction between RMS (Root Mean Square) voltage and average voltage in AC circuits. RMS voltage is defined as the DC voltage that produces the same heating effect in a resistive load, while average voltage can yield misleading results, particularly in AC systems. The RMS value is crucial for accurate power calculations, especially in circuits with inductance, where the relationship between voltage and current is complex. The forum participants emphasize that RMS calculations are applicable to various signal types, including AC, DC, and non-sinusoidal signals.

PREREQUISITES
  • Understanding of RMS voltage and its significance in electrical engineering
  • Familiarity with AC circuit analysis and Ohm's Law
  • Knowledge of inductance and its effects on circuit behavior
  • Basic calculus for evaluating integrals in power calculations
NEXT STEPS
  • Study the derivation and application of RMS voltage in AC circuits
  • Learn about the impact of inductance on power calculations in electrical circuits
  • Explore the differences between RMS and average power in various circuit configurations
  • Investigate the use of complex impedance in AC circuit analysis
USEFUL FOR

Electrical engineers, physics students, and anyone involved in circuit design or analysis who needs to understand the implications of RMS voltage versus average voltage in power calculations.

Efeguleroglu
Messages
24
Reaction score
2
We write rms formula as
$$v_{rms}=\sqrt\frac{\int_a^b[f(x)]^2dx}{|b-a|}$$
I know if we take arithmetic mean average voltage will be 0. So we want all voltage values to be positive. Why don't we do that:
$$V_{average}=\frac{\int_a^b\sqrt{[f(x)]^2}dx}{|b-a|}$$
That's first what I did:
$$\phi=ABcos(\omega t)$$
$$d\phi=-AB\omega sin(\omega t) dt$$
$$V=-\frac{d\phi}{dt}=AB\omega sin(\omega t)$$
If we take rms of $$AB\omega sin(\omega t)$$ we find $$\frac{AB\omega}{\sqrt{2}}$$
In my method it's this:
$$f(t)=AB\omega sin(\omega t)$$$$\frac{\int_0^{\frac{\pi}{2}}{f(t)}dt}{\frac{\pi}{2}}=\frac{2AB\omega}{\pi}$$
So please can someone explain why do I have such a confusion?
 
Last edited:
Physics news on Phys.org
RMS is not the same as 'average' voltage (as you note). Simply stated, the RMS value of a waveform is the DC voltage which would produce equivalent heating in a resistive load. The difference between the RMS and 'average' calculation is the result of the fact that power is proportional to the square of the voltage.
 
  • Like
Likes   Reactions: DaveE
Dullard said:
RMS is not the same as 'average' voltage (as you note). Simply stated, the RMS value of a waveform is the DC voltage which would produce equivalent heating in a resistive load.
Correct.

Dullard said:
The difference between the RMS and 'average' calculation is the result of the fact that power is proportional to the square of the voltage.
Not correct. At least not without defining a specific circuit. You might say square of current also.

The universal statement that does not depend on a specific circuit is ##P(t)=V(t)I(t)## and ##P_{avg}=V_{RMS}I_{RMS}##

The important thing about RMS that it works for AC+DC signals, non-sinusoidal signals, intervals other than an integer number of cycles, aperiodic signals, and even signals that cannot be expressed as a function.
 
  • Like
Likes   Reactions: Asymptotic and vanhees71
Also it's important to remember the EMFs are not necessarily a voltage. The latter is a potential difference and thus it's only applicable if there's a potential, which is not the case if inductances are not negligible.
 
vanhees71 said:
Also it's important to remember the EMFs are not necessarily a voltage. The latter is a potential difference and thus it's only applicable if there's a potential, which is not the case if inductances are not negligible.
So the less the inductance is, the more precise the result of the rms emf is you say.
 
That's not what I say. It doesn't make any sense to me.

What you want to know for your electricity bill is how much power some appliance uses effectively, and that's given by the RMS of ##P(t)## given in #3.

Take as an example a circuit consisting of a real inductance, i.e., an ideal inductance ##L## in series with an Ohmic resistor ##R##. The equation reads
$$L \dot{i} + R i=U_0 \cos(\omega t)=U_0 \mathrm{Re} \exp(\mathrm{i} \omega t).$$
After some transient state the complex current (you can take the real part at the end of the calculation goes like
$$i(t)=i_0 \exp(\mathrm{i} \omega t).$$
Plugging this into the equation of motion you get
$$i_0 (\mathrm{i} L \omega + R)=U_0 \; \Rightarrow \; i_0=\frac{1}{Z} U_0$$
with
$$Z=R+\mathrm{i} \omega L.$$
Now the momentaneous power is
$$P(t)=i U =U_0^2 \cos(\omega t) \mathrm{Re} \left [\frac{1}{Z} \exp(\mathrm{i} \omega t) \right].$$
Now
$$\frac{1}{Z}=\frac{1}{R+\mathrm{i} \omega L} = \frac{R-\mathrm{i} \omega L}{R^2+\omega^2 L^2}.$$
And thus
$$P(t)=\frac{U_0^2}{R^2+\omega^2 L^2} \cos(\omega t) [R \cos (\omega t)+\omega L \sin(\omega t)].$$
Now you are not interested on the momenaneous power consumption but the time average. Now it's a periodic function with period ##T=2 \pi/\omega##, and thus you average as
$$\overline{P}=\frac{1}{T} \int_0^{T} P(t).$$
All you need are the integrals
$$\int_0^T \mathrm{d} t \cos^2(\omega t)=\frac{1}{2} \int_0^T \mathrm{d} t [\cos^2(\omega t)+\sin^2(\omega t)]=\frac{T}{2}, \quad \int_0^T \mathrm{d} t \cos(\omega t) \sin(\omega t)=\int_0^T \mathrm{d} t \frac{1}{2} \sin(2 \omega t)=0.$$
Thus your average power consumption is
$$\overline{P}=\frac{1}{2} U_0^2 \frac{R}{R^2+\omega^2 L^2}.$$
 
I don't care my power consumption. But I got what I was chasing I think, thank you for that. It was just about definition. I constructed it on power.
$$ε(t)=ε_{max}sin(\omega t)$$
$$P(t)=\frac{{ε_{max}}^2 sin^2(\omega t)}{R}$$
$$P_{efficient}=\frac{\int_a^bP(t)dt}{b-a}=\frac{\int_a^b\frac{{ε_{max}}^2 sin^2(\omega t)}{R}dt}{b-a}=\frac{{ε_{efficient}}^2}{R}$$
$${ε_{rms}}={ε_{efficient}}$$
 
Yes, that's the point: You use the RMS of the "voltage" in this case of a pure Ohmic resistor, because it provides the time-averaged power. My example was just to demonstrate what happens if a inductivity is present. It's always the time-averaged power you are interested in, and that tells you, how this averaging has to be done.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 4 ·
Replies
4
Views
991
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K