Will the Tractor and Tesla Avoid a Collision on the Mountain Road?

Click For Summary
A collision scenario is presented involving a tractor and a Tesla on a mountain road, with both vehicles starting to brake after a 0.5-second reaction time. The tractor travels at 40 km/h and the Tesla at 80 km/h, both decelerating at 5 m/s². Initial calculations suggest that they collide after 3.6 seconds, with the Tesla reaching a speed of 4 m/s at impact, while the tractor has already stopped. The discussion emphasizes the importance of confirming whether the tractor stops before the collision, as this affects the outcome of the scenario. The conversation highlights the need for careful application of kinematic equations to determine the dynamics of the situation accurately.
  • #91
ChrisBrandsborg said:
Can you see some errors?
Lazy eh ? Me, too :smile:
You didn't have x(-vB/aB) on the left, you had 0 there!
 
Physics news on Phys.org
  • #92
ChrisBrandsborg said:
How do you get ##-{1\over 2 }v_{B,i} \;t ## ?
If ##\ \
0 - v_{B,i} = at \ \ ## then ##
\ \ {1\over 2 } a t^2 = - {1\over 2 } v_{B,i} \; t\ \ ##
 
  • #93
BvU said:
Lazy eh ? Me, too :smile:
You didn't have x(-vB/aB) on the left, you had 0 there!

I don't fully understand, you als have the function = 0?
Do you get ##-{1\over 2 }v_{B,i} \;t ## from the position function or from 0-vB = at ?
 
  • #94
BvU said:
If ##\ \
0 - v_{B,i} = at \ \ ## then ##
\ \ {1\over 2 } a t^2 = - {1\over 2 } v_{B,i} \; t\ \ ##

Oh, yeah, true :) så then you can insert that into the other function to get a?
 
  • #95
ChrisBrandsborg said:
I don't fully understand, you als have the function = 0?
I quoted from post #70
ChrisBrandsborg said:
=> (aB/2)t^2 + vB(initial)*t - vA(initial)*t + xBi = 0

I insert ## \ \ a = -v_{B,i} / t \ \ ## in ## \ \ {1\over 2 } a t^2 \ \ ## to get a simple equation in terms of one unknown, namely ##\ \ t##
 
  • Like
Likes ChrisBrandsborg
  • #96
BvU said:
I quoted from post #70

I insert ## a = -v_{B,i} / t ## in ## \ \ {1\over 2 } a t^2 ## to get a simple equation in terms of one unknown, namely ##\ \ t|##
Okay! I will try to solve it now! Thanks a lot :)
 
  • #97
I got t = 1.95, and put that into a = (-vB/t) and got a = 11.4m/s2
 
  • #98
And, does that look sensible ?
(It's what I got -- but that doesn't mean a thing :smile:)
 
  • #99
BvU said:
And, does that look sensible ?
(It's what I got -- but that doesn't mean a thing :smile:)

It looks better than the last solution :D
But yeah, it look sensible:)
 
  • #100
How do you know that the tractor will stop?
 
  • #101
Hello noname, :welcome:

This is a year old ! But I think the calculations are up to a certain moment (the collision). After that, the tractor may well roll over the Tesla if the driver still lisn't looking.
 

Similar threads

Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
15
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K