MHB Word problem finding dimensions (please check my answer)

pita0001
Messages
18
Reaction score
0
A homeowner wants to fence a rectangular play yard using 72 ft of fencing. The side of the house will be used as one side of the rectangle. Find the dimensions for which the area is a maximum and determine the maximum area.
I got L=18 and W=36 So my maximum area is 648 ftIs this correct?
 
Mathematics news on Phys.org
Well, let's see. Suppose the total length of fencing available is $L$. Let's let $y$ be the length of the two sides perpendicular to the house and $x$ be the length of the side parallel to the house. So we have the constraint:

$$x+2y=L$$

And the objective function, that which we wish to maximize is, which is the area $A$ of the enclosed area:

$$A=xy$$

Solving the constraint for $x$, we obtain:

$$x=L-2y$$

And so substituting for $x$ into the objective function, we get:

$$A=(L-2y)y$$

Now, we see that this function is quadratic, and has the roots:

$$y=0,\,\frac{L}{2}$$

We know this quadratic function opens downward, and so the vertex is at the maximum, and this vertex will lie on the axis of symmetry, which is midway between these roots, and so the function is maximized for:

$$y=\frac{L}{4}\implies x=\frac{L}{2}$$

And the maximum value of the objective function is therefore:

$$A_{\max}=\frac{L^2}{8}$$

Now, using the given value of $$L=72\text{ ft}$$, we then have:

$$x=\frac{72\text{ ft}}{2}=36\text{ ft}$$

$$y=\frac{72\text{ ft}}{4}=18\text{ ft}$$

$$A_{\max}=\frac{(72\text{ ft})^2}{8}=648\text{ ft}^2$$

So, yes you are correct.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top