MHB Word problem: initial height of projectile

mathdrama
Messages
20
Reaction score
0
A ball is thrown from a cliff. The path of the ball modeled by the equation
h = -5t^2+ 5t + 210,
where h is the height, in metres, of the ball above the ground, and t is the time, in seconds, after it is thrown. How high is the cliff?

Not really sure how to do this problem. I know that one of the roots is -6, but I don't know how to use this information.
 
Mathematics news on Phys.org
Re: word problem

mathdrama said:
A ball is thrown from a cliff. The path of the ball modeled by the equation
h = -5t^2+ 5t + 210,
where h is the height, in metres, of the ball above the ground, and t is the time, in seconds, after it is thrown. How high is the cliff?

Not really sure how to do this problem. I know that one of the roots is -6, but I don't know how to use this information.

Since $t$ is the time after the ball is thrown, you have to set $t=0$ at the equation to find the height of the ball before it's thrown, so when it is still on the cliff.
 
Re: word problem

So to make sure I have this right...

Let t = 0
h = -5(0^2) + 5(0) + 210
h = 0 + 0 + 210
h = 210
Therefore, the cliff is 210 meters high.
 
Re: word problem

mathdrama said:
So to make sure I have this right...

Let t = 0
h = -5(0^2) + 5(0) + 210
h = 0 + 0 + 210
h = 210
Therefore, the cliff is 210 meters high.

Yes, it is right! (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top