Work Done and Acceleration (Mistaken Answers?)

AI Thread Summary
In the discussion regarding work done and acceleration, a participant expressed confusion over answers related to acceleration and power in physics problems. They initially answered that there is acceleration down towards Earth, but the solution stated otherwise, leading to uncertainty. It was confirmed that the participant's answers were correct, but concerns were raised about the reliability of test bank questions. The conversation highlighted the misconception that zero velocity implies zero acceleration, emphasizing that acceleration remains consistent across inertial frames. The discussion underscores the importance of accurate physics education and the potential issues with existing test materials.
amandela
Messages
9
Reaction score
3
Homework Statement
Q1) A ball is thrown and follows a parabolic path. Air friction is negligible. Point Q is the highest point on the path. What is the direction of the acceleration there?

Q2) A weightlifter lifts a mass m at constant speed to a height h in time t. How much work is done by the weightlifter?
Relevant Equations
Wnet = ΔKE + ΔPE + Wnc
So for Q1, I answered down (towards Earth) but the solution says there is no acceleration there.

For Q2, I answered mgh, but the solution says it's mgh/t, which is power, right?

I just want to make sure I'm not super confused.

Thank you.
 
Physics news on Phys.org
You are correct in both cases. Where are you getting the other answers from?
 
PeroK said:
You are correct in both cases. Where are you getting the other answers from?
Agreed, except that if the weight is lifted from rest at speed h/t then it reaches h with KE ##\frac 12mh^2/t^2##.
 
haruspex said:
Agreed, except that if the weight is lifted from rest at speed h/t then it reaches h with KE ##\frac 12mh^2/t^2##.
It says at constant speed.
 
PeroK said:
You are correct in both cases. Where are you getting the other answers from?
Thank you. They're from a test bank for the AP mechanics exam.
 
amandela said:
Thank you. They're from a test bank for the AP mechanics exam.
There seems to be a growing problem with dodgy questions and/or dodgy answers. That someone teaching physics might think the acceleration is zero when velocity is zero ought to shock me, but doesn't surprise me.

Note that for any motion you can always change your inertial frame of reference so that an object is instantaneously at rest. But, acceleration is the same across all inertial reference frames. Which is why Newton's laws deal with force and acceleration and not velocity.
 
  • Like
Likes Lnewqban and amandela
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top