Work required to extract heat from a refrigerator

Click For Summary
SUMMARY

The discussion centers on the calculation of work required to extract heat from a refrigerator using a reversible engine. The user initially calculated a negative work value, contrary to the answer key's positive value of +0.043 cal. The confusion arose from the interpretation of heat transfer signs and the application of the conservation of energy principle. Ultimately, the user acknowledged a misunderstanding in their approach, particularly regarding the direction of energy flow and the conventions used in thermodynamic calculations.

PREREQUISITES
  • Understanding of thermodynamic cycles, specifically reversible engines.
  • Familiarity with the concepts of heat transfer (Qc and Qh) and their signs.
  • Knowledge of the first law of thermodynamics and conservation of energy.
  • Proficiency in using the integral form of thermodynamic equations, such as dQ/T.
NEXT STEPS
  • Review the principles of thermodynamics, focusing on reversible processes.
  • Study the conventions for work and heat in thermodynamic systems.
  • Learn about the implications of energy flow direction in thermodynamic calculations.
  • Explore examples of heat engines and refrigerators to solidify understanding of energy conservation.
USEFUL FOR

Students studying thermodynamics, engineers working with refrigeration systems, and anyone interested in the principles of heat transfer and energy conservation in thermodynamic cycles.

guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
A reversible refrigerator engine extracts heat from
the inside of a refrigerator compartment kept at 8°C and rejects unwanted
heat QH to its 20°C exterior. Find the work required to extract one calorie
from the interior of the refrigerator compartment
Relevant Equations
dQ/T=0
The answer key says the work done should be +.043cal. I am getting a negative sign.

I have posted my work in the attached image.
My logic is that since this a reversible engine we can say the integral of dQ/T=0. Looking at the cycle, Qc isi being absorbed (Qc>0) and Qh is being rejected (Qh<0). Then we can say Qc/Tc-Qh/Th=0.

Solving for Qh, we get 1.0427cal.
We also know W= the integral of dQ. So we can say W=Qc-Qh.

Doing so makes me get a negative sign.

I guess from my perspective the negative indicates the system is doing work, hence W<0.

Am I doing something wrong/looking at the situation from a different perspective by getting this negative sign?
IMG_0347.jpg
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
quittingthecult said:
Homework Statement:: A reversible refrigerator engine extracts heat from
the inside of a refrigerator compartment kept at 8°C and rejects unwanted
heat QH to its 20°C exterior. Find the work required to extract one calorie
from the interior of the refrigerator compartment
Relevant Equations:: dQ/T=0

The answer key says the work done should be +.043cal. I am getting a negative sign.

I have posted my work in the attached image.
My logic is that since this a reversible engine we can say the integral of dQ/T=0. Looking at the cycle, Qc isi being absorbed (Qc>0) and Qh is being rejected (Qh<0). Then we can say Qc/Tc-Qh/Th=0.
If ##Q_c>0## and ##Q_h<0##, then ##\frac{Q_C}{T_C}-\frac{Q_H}{T_H}## will be positive. You should either have a plus sign in between or use absolute values.

quittingthecult said:
Solving for Qh, we get 1.0427cal.
We also know W= the integral of dQ. So we can say W=Qc-Qh.
Look at the arrows in your diagram. The energy coming into the system is ##|W|+Q_c##, and the energy going out is ##|Q_h|##. Conservation of energy requires ##|Q_h| = |W| + Q_c##.

quittingthecult said:
Doing so makes me get a negative sign.

I guess from my perspective the negative indicates the system is doing work, hence W<0.
The usual convention is if the system does work on the environment, ##W## is positive. Are you using a different convention or did you make a mistake?
 
  • Like
Likes   Reactions: BvU and guyvsdcsniper
vela said:
If ##Q_c>0## and ##Q_h<0##, then ##\frac{Q_C}{T_C}-\frac{Q_H}{T_H}## will be positive. You should either have a plus sign in between or use absolute values.Look at the arrows in your diagram. The energy coming into the system is ##|W|+Q_c##, and the energy going out is ##|Q_h|##. Conservation of energy requires ##|Q_h| = |W| + Q_c##.The usual convention is if the system does work on the environment, ##W## is positive. Are you using a different convention or did you make a mistake?
Ah your right. I overthought this way too hard. I should have just looked at the arrows.

Thank you, your response has helped me realize the mistake i made.
 
  • Like
Likes   Reactions: BvU

Similar threads

Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K