Let f:X->Y and g:Y->Z be functions. Suppose A is a subset of Z. I'm wondering whether (g o f)(adsbygoogle = window.adsbygoogle || []).push({}); ^{-1}(A)=f^{-1}(g^{-1}(A)).

I'm lost as to where to go with this problem. I know I need to do something using images, but manipulating the inverses of composite functions is proving to be very confusing; I don't know how to properly translate these functions into terms that match up with my definitions, which are as follows:

1) Let f:X->Y be a function: for a subset A of X, the set f(A)={y in Y: y=f(x) for some x in A}.

2) For a subset C of Y, the set f^{-1}(C) = {x in X: f(x) is in C}.

Can you please point me in the right direction? I'm sure that if I could just grasp how to prove this theorem, I'd understand inverses so much better.

Thank you for your time!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Working with the inverses of composite functions

**Physics Forums | Science Articles, Homework Help, Discussion**