MHB Y=-X if X ~ Ber(1/4): Solving the Mystery

Dustinsfl
Messages
2,217
Reaction score
5
If \(Y = -X\) and \(X\sim Ber(1/4)\), then what is Y?

I know that
\[
X\sim
\begin{cases}
1 - p, & x = 0\\
p, & x = 1
\end{cases}
\]
where \(p = 0.25\) in this case. What is the negative of \(X\) though. It doesn't make any sense making the probabilities negative.
 
Physics news on Phys.org
I'm not confident in this answer but I would consider this to also follow a Bernoulli distribution by the following:

$Y\sim
\begin{cases}
1 - p, & y = 0\\
p, & y = -1
\end{cases}$

You should look up random variable transformations and maybe you can find some examples with discrete transforms. The examples that come to mind I've done in the past year have all been for continuous distributions and involve using the CDF.
 
Jameson said:
I'm not confident in this answer but I would consider this to also follow a Bernoulli distribution by the following:

$Y\sim
\begin{cases}
1 - p, & y = 0\\
p, & y = -1
\end{cases}$

You should look up random variable transformations and maybe you can find some examples with discrete transforms. The examples that come to mind I've done in the past year have all been for continuous distributions and involve using the CDF.

That is the correct distribution, but it is not Bernoulli. A RV with a Bernoulli distribution takes only the values 0 or 1.

Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.
 
zzephod said:
That is the correct distribution, but it is not Bernoulli. A RV with a Bernoulli distribution takes only the values 0 or 1.

Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.

Your observation is not particularly useful from a practical point of view. Let's suppose to have two independent variables X and Y with exponential distribution and we want to find the distribution of the variable Z = X - Y. It is clear that it is necessary to determine the distribution of the variable - Y that will still exponential only instead of y appears -y and its domain will include all the $y \le 0$. Same problem of course if X and Y have Bernoulli distribution ...

Kind regards

$\chi$ $\sigma$
 
zzephod said:
Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.

Well, I can tell you are incorrect with your hypothesis.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top