MHB Y=-X if X ~ Ber(1/4): Solving the Mystery

Click For Summary
When \(Y = -X\) and \(X\) follows a Bernoulli distribution with \(p = 0.25\), the proposed distribution for \(Y\) is not Bernoulli, as it takes values of 0 and -1 instead of 0 and 1. The discussion highlights confusion around the transformation of random variables, particularly with discrete distributions. It is suggested that the correct approach involves looking into random variable transformations, although examples provided mainly focus on continuous distributions. Ultimately, the consensus is that \(Y\) does not adhere to a Bernoulli distribution, and clarification on the original question may be necessary.
Dustinsfl
Messages
2,217
Reaction score
5
If \(Y = -X\) and \(X\sim Ber(1/4)\), then what is Y?

I know that
\[
X\sim
\begin{cases}
1 - p, & x = 0\\
p, & x = 1
\end{cases}
\]
where \(p = 0.25\) in this case. What is the negative of \(X\) though. It doesn't make any sense making the probabilities negative.
 
Physics news on Phys.org
I'm not confident in this answer but I would consider this to also follow a Bernoulli distribution by the following:

$Y\sim
\begin{cases}
1 - p, & y = 0\\
p, & y = -1
\end{cases}$

You should look up random variable transformations and maybe you can find some examples with discrete transforms. The examples that come to mind I've done in the past year have all been for continuous distributions and involve using the CDF.
 
Jameson said:
I'm not confident in this answer but I would consider this to also follow a Bernoulli distribution by the following:

$Y\sim
\begin{cases}
1 - p, & y = 0\\
p, & y = -1
\end{cases}$

You should look up random variable transformations and maybe you can find some examples with discrete transforms. The examples that come to mind I've done in the past year have all been for continuous distributions and involve using the CDF.

That is the correct distribution, but it is not Bernoulli. A RV with a Bernoulli distribution takes only the values 0 or 1.

Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.
 
zzephod said:
That is the correct distribution, but it is not Bernoulli. A RV with a Bernoulli distribution takes only the values 0 or 1.

Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.

Your observation is not particularly useful from a practical point of view. Let's suppose to have two independent variables X and Y with exponential distribution and we want to find the distribution of the variable Z = X - Y. It is clear that it is necessary to determine the distribution of the variable - Y that will still exponential only instead of y appears -y and its domain will include all the $y \le 0$. Same problem of course if X and Y have Bernoulli distribution ...

Kind regards

$\chi$ $\sigma$
 
zzephod said:
Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.

Well, I can tell you are incorrect with your hypothesis.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K