MHB Y=-X if X ~ Ber(1/4): Solving the Mystery

AI Thread Summary
When \(Y = -X\) and \(X\) follows a Bernoulli distribution with \(p = 0.25\), the proposed distribution for \(Y\) is not Bernoulli, as it takes values of 0 and -1 instead of 0 and 1. The discussion highlights confusion around the transformation of random variables, particularly with discrete distributions. It is suggested that the correct approach involves looking into random variable transformations, although examples provided mainly focus on continuous distributions. Ultimately, the consensus is that \(Y\) does not adhere to a Bernoulli distribution, and clarification on the original question may be necessary.
Dustinsfl
Messages
2,217
Reaction score
5
If \(Y = -X\) and \(X\sim Ber(1/4)\), then what is Y?

I know that
\[
X\sim
\begin{cases}
1 - p, & x = 0\\
p, & x = 1
\end{cases}
\]
where \(p = 0.25\) in this case. What is the negative of \(X\) though. It doesn't make any sense making the probabilities negative.
 
Physics news on Phys.org
I'm not confident in this answer but I would consider this to also follow a Bernoulli distribution by the following:

$Y\sim
\begin{cases}
1 - p, & y = 0\\
p, & y = -1
\end{cases}$

You should look up random variable transformations and maybe you can find some examples with discrete transforms. The examples that come to mind I've done in the past year have all been for continuous distributions and involve using the CDF.
 
Jameson said:
I'm not confident in this answer but I would consider this to also follow a Bernoulli distribution by the following:

$Y\sim
\begin{cases}
1 - p, & y = 0\\
p, & y = -1
\end{cases}$

You should look up random variable transformations and maybe you can find some examples with discrete transforms. The examples that come to mind I've done in the past year have all been for continuous distributions and involve using the CDF.

That is the correct distribution, but it is not Bernoulli. A RV with a Bernoulli distribution takes only the values 0 or 1.

Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.
 
zzephod said:
That is the correct distribution, but it is not Bernoulli. A RV with a Bernoulli distribution takes only the values 0 or 1.

Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.

Your observation is not particularly useful from a practical point of view. Let's suppose to have two independent variables X and Y with exponential distribution and we want to find the distribution of the variable Z = X - Y. It is clear that it is necessary to determine the distribution of the variable - Y that will still exponential only instead of y appears -y and its domain will include all the $y \le 0$. Same problem of course if X and Y have Bernoulli distribution ...

Kind regards

$\chi$ $\sigma$
 
zzephod said:
Given dwsmiths history of accuracy of posting questions I would not be supprised if what he was really asked for was the distribution of $Y=1-X$

.

Well, I can tell you are incorrect with your hypothesis.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top