MHB Year 10 Maths Find the length and width that will maximize the area of rectangle

liang123993
Messages
1
Reaction score
0
View attachment 9234

The question is in the image. Working out with every step would be much appreciated.
 

Attachments

  • unknown.png
    unknown.png
    6 KB · Views: 106
Mathematics news on Phys.org
Here's a start:

Let $W$ be width, $L$ be length an $A$ be the desired area. Then,

$$5W+2L=550$$

$$LW=A$$

Can you make any progress from there?
 
Greg said:
Here's a start:

Let $W$ be width, $L$ be length an $A$ be the desired area. Then,

$$5W+2L=550$$

$$LW=A$$

Can you make any progress from there?

$$W=\frac AL$$

$$\frac{5A}{L}+2L=550$$

$$5A+2L^2=550L$$

$$A=110L-\frac{2L^2}{5}$$

$A$ has a maximum at the vertex of this inverted parabola, so $L=\frac{275}{2}$. Finding $A$ and $W$ from here should be straightforward.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top