MHB Year 10 Maths Find the length and width that will maximize the area of rectangle

Click For Summary
To maximize the area of a rectangle given the constraint \(5W + 2L = 550\), the relationship \(LW = A\) is established. By substituting \(W\) in terms of \(A\) and \(L\), the equation simplifies to \(5A + 2L^2 = 550L\). This quadratic equation indicates that the area \(A\) has a maximum at the vertex, calculated as \(L = \frac{275}{2}\). From this point, determining the corresponding width \(W\) and maximum area \(A\) becomes straightforward. The solution effectively demonstrates how to optimize the area under the given constraints.
liang123993
Messages
1
Reaction score
0
View attachment 9234

The question is in the image. Working out with every step would be much appreciated.
 

Attachments

  • unknown.png
    unknown.png
    6 KB · Views: 118
Mathematics news on Phys.org
Here's a start:

Let $W$ be width, $L$ be length an $A$ be the desired area. Then,

$$5W+2L=550$$

$$LW=A$$

Can you make any progress from there?
 
Greg said:
Here's a start:

Let $W$ be width, $L$ be length an $A$ be the desired area. Then,

$$5W+2L=550$$

$$LW=A$$

Can you make any progress from there?

$$W=\frac AL$$

$$\frac{5A}{L}+2L=550$$

$$5A+2L^2=550L$$

$$A=110L-\frac{2L^2}{5}$$

$A$ has a maximum at the vertex of this inverted parabola, so $L=\frac{275}{2}$. Finding $A$ and $W$ from here should be straightforward.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
21
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
1K
Replies
8
Views
5K