-z.55 Find the value(s) of t corresponding to the extrema

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Extrema
Click For Summary
SUMMARY

The extrema of the function \( f(x,y,z) = \sin(x^2+y^2)\cos(z) \) are determined under the constraints \( x^2+y^2=4t \), \( 0\le t\le\pi \), and \( z=\frac{\pi}{4} \). The derivative \( f_7^\prime = 2\sqrt{2}\cos(4t) \) is set to zero, leading to the critical point \( t = \frac{\pi}{8} \), classified as a minimum. This analysis confirms the specific value of \( t \) corresponding to the extremum of the given function.

PREREQUISITES
  • Understanding of multivariable calculus, specifically extrema and constraints.
  • Familiarity with trigonometric functions and their derivatives.
  • Knowledge of the method of Lagrange multipliers for constrained optimization.
  • Ability to solve equations involving trigonometric identities.
NEXT STEPS
  • Study the method of Lagrange multipliers for constrained optimization problems.
  • Learn about the classification of extrema in multivariable functions.
  • Explore the implications of trigonometric derivatives in optimization.
  • Investigate the behavior of \( \sin \) and \( \cos \) functions over specific intervals.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, optimization techniques, and trigonometric analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{Find the value(s) of $t$ corresponding to the extrema of}$
$$f(x,y,z)=\sin(x^2+y^2)\cos(z)$$
$\text{subject to the constraints} $
$$\text{$x^2+y^2=4t, 0\le t\le\pi$, and $z=\frac{\pi}{4}$}$$
$\text{Classify each extremum as a minimum or maximum.}$
\begin{align*} \displaystyle
f_7(x,y,z)&=\sin(4t)\cos\left(\frac{\pi}{4}\right)\\
&=\frac{\sqrt{2}}{2}\sin(4t)\\
f_7^\prime&=2\sqrt{2}\cos(4t)\\
&\textbf{got lost here}\\
\therefore t&=\color{red}{\frac{\pi}{8} , \textit{min}}
\end{align*}
 
Physics news on Phys.org
karush said:
$\text{Find the value(s) of $t$ corresponding to the extrema of}$
$$f(x,y,z)=\sin(x^2+y^2)\cos(z)$$
$\text{subject to the constraints} $
$$\text{$x^2+y^2=4t, 0\le t\le\pi$, and $z=\frac{\pi}{4}$}$$
$\text{Classify each extremum as a minimum or maximum.}$
\begin{align*} \displaystyle
f_7(x,y,z)&=\sin(4t)\cos\left(\frac{\pi}{4}\right)\\
&=\frac{\sqrt{2}}{2}\sin(4t)\\
f_7^\prime&=2\sqrt{2}\cos(4t)\\
&\textbf{got lost here}\\
\therefore t&=\color{red}{\frac{\pi}{8} , \textit{min}}
\end{align*}

Set the derivative equal to 0 and solve for t...
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
884
  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K