MHB -z.55 Find the value(s) of t corresponding to the extrema

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Extrema
Click For Summary
The function f(x,y,z) = sin(x^2 + y^2)cos(z) is analyzed under the constraint x^2 + y^2 = 4t with z fixed at π/4. The derivative f' is calculated as 2√2cos(4t), and setting this equal to zero leads to critical points for t. The solution yields t = π/8, which is classified as a minimum. Further analysis may be needed to confirm the behavior of the function around this point.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{Find the value(s) of $t$ corresponding to the extrema of}$
$$f(x,y,z)=\sin(x^2+y^2)\cos(z)$$
$\text{subject to the constraints} $
$$\text{$x^2+y^2=4t, 0\le t\le\pi$, and $z=\frac{\pi}{4}$}$$
$\text{Classify each extremum as a minimum or maximum.}$
\begin{align*} \displaystyle
f_7(x,y,z)&=\sin(4t)\cos\left(\frac{\pi}{4}\right)\\
&=\frac{\sqrt{2}}{2}\sin(4t)\\
f_7^\prime&=2\sqrt{2}\cos(4t)\\
&\textbf{got lost here}\\
\therefore t&=\color{red}{\frac{\pi}{8} , \textit{min}}
\end{align*}
 
Physics news on Phys.org
karush said:
$\text{Find the value(s) of $t$ corresponding to the extrema of}$
$$f(x,y,z)=\sin(x^2+y^2)\cos(z)$$
$\text{subject to the constraints} $
$$\text{$x^2+y^2=4t, 0\le t\le\pi$, and $z=\frac{\pi}{4}$}$$
$\text{Classify each extremum as a minimum or maximum.}$
\begin{align*} \displaystyle
f_7(x,y,z)&=\sin(4t)\cos\left(\frac{\pi}{4}\right)\\
&=\frac{\sqrt{2}}{2}\sin(4t)\\
f_7^\prime&=2\sqrt{2}\cos(4t)\\
&\textbf{got lost here}\\
\therefore t&=\color{red}{\frac{\pi}{8} , \textit{min}}
\end{align*}

Set the derivative equal to 0 and solve for t...
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
618
  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K