-z.61.W8.6 int sin^2(x)cos^2(x) dx

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral $\displaystyle \int\sin^2 \left({x}\right)\cos^2 \left({x}\right) dx$. Participants explore various methods for simplifying the integrand using trigonometric identities and substitution techniques. The conversation includes both theoretical approaches and practical steps for solving the integral.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant suggests using the identities $\sin^2\left({x}\right) = \frac{1-\cos\left({2x}\right)}{2}$ and $\cos^2\left({x}\right) = \frac{1+\cos\left({2x}\right)}{2}$ to rewrite the integral.
  • Another participant proposes applying a Pythagorean identity to simplify $\cos^2\left({2x}\right)$ in the context of the integral.
  • A later reply indicates that using the sine double angle formula may provide a more straightforward approach to the integral.
  • One participant references an integral table to derive a formula for $\int\sin^2 \left({ax}\right) dx$ and applies it to the case where $a=2$.
  • There is a suggestion to use substitution with $u=2x$ to further simplify the integral.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method to evaluate the integral, as multiple approaches are proposed and discussed without resolution.

Contextual Notes

Some steps in the reasoning are left unresolved, particularly regarding the handling of $\cos^2\left({2x}\right)$ and the implications of using different trigonometric identities. The discussion reflects various assumptions about the applicability of certain formulas and identities.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate $\displaystyle \int\sin^2 \left({x}\right)\cos^2 \left({x}\right)$

$\displaystyle
\sin^2\left({x}\right)
=\frac{1-\cos\left({2x}\right)}{2}$ and $\displaystyle
\cos^2 \left({x}\right)
=\frac{1+\cos\left({2x}\right)}{2}$

So

$\displaystyle
\int\frac{1-\cos\left({2x}\right)}{2}
\cdot
\frac{1+\cos\left({2x}\right)}{2} \ dx
\implies
\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx$

Not sure how to deal with the $\cos^2 \left({2x}\right) $
 
Physics news on Phys.org
Deal with it in the same way you dealt with $\cos^2(x)$ in the original integrand...:)

edit: use a Pythagorean identity first on the new integrand. ;)
 
$$\frac{1}{4}-\frac{1}{4}\left(\frac{\text{?}}{\text{?}}\right)$$
What Mark is saying here "deal with it in the same way" is applying the simple trig formula for $$\cos^2{2x}$$.
WLOG, $$\cos^2{u}=\frac{1+\cos{2u}}{2}$$.
 
MarkFL said:
Deal with it in the same way you dealt with $\cos^2(x)$ in the original integrand...:)

edit: use a Pythagorean identity first on the new integrand. ;)

$$\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx
\implies
\frac{1}{4}\int \sin^2 \left({2x} \right) \ dx$$

So would the next step be $u=2x$
 
It could be. If so, what's the next step? What does the sine squared equal to?
 
karush said:
Evaluate $\displaystyle \int\sin^2 \left({x}\right)\cos^2 \left({x}\right)$

$\displaystyle
\sin^2\left({x}\right)
=\frac{1-\cos\left({2x}\right)}{2}$ and $\displaystyle
\cos^2 \left({x}\right)
=\frac{1+\cos\left({2x}\right)}{2}$

So

$\displaystyle
\int\frac{1-\cos\left({2x}\right)}{2}
\cdot
\frac{1+\cos\left({2x}\right)}{2} \ dx
\implies
\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx$

Not sure how to deal with the $\cos^2 \left({2x}\right) $

The sine double angle formula may be easier to deal with...

$\displaystyle \begin{align*} \int{ \sin^2{(x)}\cos^2{(x)}\,\mathrm{d}x} &= \int{ \left[ \sin{(x)}\cos{(x)} \right] ^2 \,\mathrm{d}x } \\ &= \int{ \left[ \frac{1}{2}\sin{(2\,x)} \right] ^2 \,\mathrm{d}x } \\ &= \int{ \frac{1}{4} \sin^2{(2\,x)} \,\mathrm{d}x} \\ &= \int{ \frac{1}{4} \,\left\{ \frac{1}{2}\,\left[ 1 - \cos{(4\,x)} \right] \right\} \,\mathrm{d}x} \\ &= \frac{1}{8} \int{ \left[ 1 - \cos{(4\,x)} \right] \,\mathrm{d}x} \end{align*}$

Go from here...
 
From the integral table..

$$\displaystyle \int\sin^2 \left({ax}\right) dx
=\frac{x}{2}-\frac{\sin\left({2ax}\right)}{4a}$$

So $a=2$ then

$$\displaystyle
\frac{1 }{4}\left[\frac{x}{2 }+\frac{\sin\left({4x}\right)}{8}\right]
=\frac{1}{8}+\frac{\sin\left({4x}\right)}{32}+C$$

😷😷😷😷😷
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K