Zeno effect - standard derivation?

Click For Summary

Discussion Overview

The discussion revolves around the quantum Zeno effect, specifically focusing on the standard derivation of its survival probability. Participants explore the mathematical formulation and implications of the effect, including the role of measurements and the evolution of quantum states over time.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant seeks assistance with the derivation of the survival probability, expressing confusion over the transition from the exponential function expansion to the survival probability expression.
  • Another participant provides a detailed calculation of the transition amplitude, leading to the expression for the survival probability, noting the cancellation of imaginary terms.
  • A different participant explains the process of measuring the state at intervals and how this affects the survival probability, emphasizing the role of the measurement in collapsing the state.
  • One participant questions the omission of higher-order terms in the expansion, specifically the {\cal O}(t^3) term, and seeks clarification on its relevance.
  • Responses clarify that higher-order terms are neglected due to their diminishing contributions at very short times, focusing on the lowest non-trivial contributions instead.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical framework and the reasoning behind neglecting higher-order terms, but there remains some uncertainty regarding the implications of these omissions and the physical interpretation of the terms involved.

Contextual Notes

Limitations include the dependence on the assumption of instantaneous measurements and the potential impact of neglecting higher-order terms in the expansion of the exponential function.

Who May Find This Useful

Readers interested in quantum mechanics, particularly those exploring the mathematical foundations of quantum effects and the implications of measurement in quantum systems.

Agrippa
Messages
77
Reaction score
10
Hi, I'm trying to grasp the standard derivation of the quantum Zeno effect. But my calculus is limited. I would love some assistance!

Schroedinger evolution tells us that the state at time t, given the initial state at time t=0, is:

|\psi_t\rangle = e^{-i H t} |\psi_0 \rangle

We can then define the survival probability P_s(t), which is the probability that the initial state will survive or remain, at time t, using the Born rule:

P_s(t) = | \langle \psi_0| e^{-i H t} |\psi_0 \rangle |^2

From the definition of the exponential function, we can expand the power series:

e^{-i H t} \approx 1 - iHt - 1/2H^2t^2 + ...

The next part is where I get stuck. It is then often said that from this we can derive:

P_s(t) \approx 1 - ( \langle \psi_0| H^2 |\psi_0 \rangle^2 - (\langle \psi_0| H |\psi_0 \rangle )^2 )t^2

But how does that follow from the previous steps? I've never seen this spelled out anywhere before. Is anyone able to fill in the gaps here?

Once we have this expression, we can let (\Delta H)^2 stand for \langle \psi_0| H^2 |\psi_0 \rangle^2 - (\langle \psi_0| H |\psi_0 \rangle )^2 to give the simpler expression:

P_s(t) \approx 1 - (\Delta H)^2t^2

We now wish to consider the survival probability where the interval [0, t] is interrupted by n measurements at times t/n, 2t/n, ..., t. Ideally, these measurements are instananeous projections and the initial state |\psi_0\rangle is an eigenstate of the measurement operator. In that case, we get:

P_s(t) \approx [1 - (\Delta H)^2(t/n)^2 ]^n

...which approaches 1 as n approaches infinity.

How this last expression is derived is also not 100% clear to me. But I'm baffled by the part I get stuck by mentioned above and would love some help with that first.

Thanks!
 
  • Like
Likes   Reactions: atyy
Physics news on Phys.org
From
$$e^{-iHt}=1-iHt-\frac{1}{2}H^2t^2$$
we first compute the transition amplitude
$$A=\langle \psi_0|e^{-iHt}|\psi_0\rangle =\langle\psi_0|\psi_0\rangle - it\langle\psi_0|H|\psi_0\rangle -\frac{1}{2}t^2 \langle\psi_0|H^2|\psi_0\rangle$$
which can be written as
$$A=1- it\langle H\rangle -\frac{1}{2}t^2 \langle H^2\rangle$$
Therefore
$$A^*=1+ it\langle H\rangle -\frac{1}{2}t^2 \langle H^2\rangle$$
so
$$|A|^2=A^*A=1+it\langle H\rangle-\frac{t^2}{2}\langle H^2\rangle-it\langle H\rangle-\frac{t^2}{2}\langle H^2\rangle
+t^2\langle H\rangle^2+{\cal O}(t^3)$$
The imaginary terms cancel, so finally
$$|A|^2=1-t^2\langle H^2\rangle +t^2\langle H\rangle^2=1-t^2(\Delta H)^2$$
 
  • Like
Likes   Reactions: atyy, Agrippa, bhobba and 2 others
The survival probability after a short time ##t## without measurement is
$$p_s(t)=1-(\Delta H)^2t^2$$
Hence the survival probability after time ##t/n## without measurement is ##p_s(t/n)##.

Now assume that after time ##t/n## there is a measurement which reveals that the state has survived. Immediately before the measurement the state is ##|\psi(t/n)\rangle =e^{-iHt/n} |\psi_0\rangle##, but immediately after the measurement the state is ##|\psi(t/n)\rangle =|\psi_0\rangle##. At time ##t/n## the state "collapsed" from ##e^{-iHt/n} |\psi_0\rangle## to ##|\psi_0\rangle## due to the measurement. At this time, the evolution is not described by the Hamiltonian ##H##. The Hamiltonian evolution is valid only between the measurements, while the measurement itself sets the initial condition.

Now suppose that measurements are performed at times ##t/n##, ##2t/n##, ... ,##nt/n=t##. What is the probability of survival after the ##n##'th measurement? It is the probability that it survived at each time of measurement, which is the product of individual survival probabilities. Between any two measurements there is a time ##t/n##, so each individual survival probability is ##p_s(t/n)##. Therefore the total survival probability is
$$P_s(t)=p_s(t/n)\cdots p_s(t/n)=[p_s(t/n)]^n=[1-(\Delta H)^2(t/n)^2]^n$$
 
  • Like
Likes   Reactions: atyy, Agrippa, bhobba and 1 other person
Thanks. I can see why they call you Demystifier, that explains a lot!
The only thing I didn't quite get is this. In going through the A*A calculation, I found that:
$${\cal O}(t^3) = (-\frac{1}{2}t^2 \langle H^2\rangle) \times (-\frac{1}{2}t^2 \langle H^2\rangle)$$
Nothing seems to cancel the {\cal O}(t^3) term. Why, then, do we go on to drop it from subsequent expressions?
I assume it has something to do with its physical interpretation, perhaps it somehow does not represent the short time period we are considering?
 
  • Like
Likes   Reactions: atyy and Demystifier
It is a common strategy in physics. As we look into very short times t << 1, higher powers of t will give much smaller corrections and are thus neglected. The dominating contributions close to the limit t -> 0 come from the lowest powers of t, which is in this case the quadratic term.

Also look at the consistency: If we decided for some reason, that we wanted to take all terms up to t^4 into account for example, we also should expand the exponential up to this order to really get all contributions for the final expression.
 
  • Like
Likes   Reactions: atyy and Agrippa
Agrippa said:
Nothing seems to cancel the {\cal O}(t^3) term. Why, then, do we go on to drop it from subsequent expressions?
Because we keep only the lowest non-trivial contribution. Further contributions are smaller than that, so are less interesting. Besides, if one wants to keep terms of the order of ##t^3##, one must keep them from the beginning in the expansion of ##e^{-iHt}##.
 
  • Like
Likes   Reactions: atyy and Agrippa
Got it. Many thanks!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K