Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Aerospace Zeppelins and Plasma Aerodynamics

  1. Sep 13, 2009 #1
    So it's been known for awhile now that a blunt body passing through a plasma medium will experience reduced aerodynamic drag, and furthermore electrically active control surfaces can have an enhanced effect in plasma compared to conventional control surfaces, exerting greater control across the boundary layer.

    Well to me, among the oldest and bluntest aerial vehicles would be airships, like blimps and zeppelins. I'm imagining that plasma aerodynamics could benefit these old obsolete craft a lot, beyond just the benefits for futuristic high-mach designs such as hypersonic vehicles.

    Just as a thought exercise, I'm wondering if it would be possible to design a blimp or zeppelin that would be able to make use of plasma aerodynamics to achieve greater speed and performance.

    Suppose the skin of the blimp or zeppelin was made of some advanced materials, including perhaps a graphene-impregnated polymer with high conductivity. Since graphene is also highly impermeable to gas molecules, there could be an additional benefit of reducing loss of lifting gas from the envelope. Could it be possible to use a conductive skin to project an electric field around the airship, to ionize the airflow around it? Furthermore, what if our airship had a needle-nose or a leading telescoping probe extending far ahead of it, which would produce an arc-discharge at its tip to ionize the air in advance? I've also read that a counterflow plasma jet that is projected in the forward direction against the flow can also greatly increase the level of ionization in a flowstream.

    Could it be further possible to exploit the airship's large surface area to generate a magnetohydrodynamic flow around it for propulsion purposes? If our design was a zeppelin or some kind of hybrid semi-rigid hull, could we incorporate some kind of large magnetic coil shape into its superstructure which would create a propulsive flow?
    Would it be possible to use both electric and magnetic fields together, to create an enveloping propulsive flowstream with reduced friction and turbulence?
    One advantage of this could be quiet propulsion with low noise pollution. Another advantage would be the absence of moving parts, to avoid this as a failure point as well as the associated maintenance requirements. At the same time, such a propulsion mechanism could easily facilitate vectored thrust for improved stability and handling characteristics, which are particularly important near the ground.

    I'd read that lighter-than-air vehicles are being considered for revival, with companies like Aeros, SkyCat, and even Boeing and Lockheed-Martin having produced experimental prototypes for evaluation. They of course use conventional propellers for propulsion.

    http://mutateweb.com/archives/2008/05/12/hybrid-airships-being-tested-by-lockheed-martin-darpa/ [Broken]
    http://www.worldskycat.com/skycat/data.html
    http://www.worldskycat.com/skycat/features.html
    http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=awst&id=news/020606p2.xml [Broken]
    http://www.aviationweek.com/aw/generic/story.jsp?id=news/AIRSHIP07088.xml&headline=Boeing,%20Skyhook%20Team%20On%20Heavy-Lift%20Airship&channel=comm [Broken]
    http://www.dynalifter.com/Dynaliftercom/Concept.htm
    http://www.aeroscraft.com/


    Perhaps future exploration missions to Venus or even Mars could utilize such steerable craft for studying these planets and their atmosphere. In those cases, perhaps even a lifting gas such as hydrogen could be used.

    But even just here on Earth, could this concept be feasible? Where would the main technical problems and challenges be with it?
     
    Last edited by a moderator: May 4, 2017
  2. jcsd
  3. Sep 14, 2009 #2
    In what way are you thinking they could be used for future explanations to other planets, do you mean for them to be used to travel through space, or do you mean for use in exploring other planets?

    Is it even possible to maintain the pressure needed to survive in an "airship" in space? Isn't there some kind of buoyancy issue?

    Also, hydrogen seems a little dangerous to use as a lifting gas. ;)

    Sorry if some of what I've said here makes little or no sense, I'm pretty new to all this. :D
     
  4. Sep 14, 2009 #3
    I meant as atmospheric craft traveling through the atmospheres of other planets, and perhaps even of Moons like Titan and Europa. Hydrogen is risky in a reactive atmosphere, like our oxygen one here on Earth, but that doesn't have to be the case for atmospheres on other worlds. Certainly I think Mars would be safe for hydrogen, especially with its low temperatures.

    The thing is that when electric propulsion for aircraft is occasionally discussed, it's mainly regarding electric propeller-driven aircraft. I'm imagining that ion-wind and MHD could be useful, provided a suitable electric power source is available. That might be possible with hydrogen fuel cells or a small nuclear reactor.

    I'm just wondering why we can't consider these propulsion mechanisms for electric aviation. Electric automobiles have been ridiculed for a long time now, because of their limited performance capabilities in relation to conventional automobiles, but newer technologies are gradually spanning the gap. I expect the same thing could be the case for electric aeropropulsion.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Zeppelins and Plasma Aerodynamics
  1. Aerodynamics of HAWTs (Replies: 13)

  2. Train aerodynamics (Replies: 11)

  3. Aerodynamic Speed (Replies: 9)

  4. Aerodynamics Question (Replies: 1)

Loading...