Zeroth component of 4-momentum & energy-momentum relation

Click For Summary
SUMMARY

The discussion centers on the concept of 4-momentum in special relativity, specifically the zeroth component of 4-momentum, denoted as $$p^{0}$$, which is directly proportional to a particle's energy $$E$$, expressed as $$p^{0}=\frac{E}{c}$$. The derivation of the relativistic energy-momentum relation $$E^{2}=m^{2}c^{4}+p^{2}c^{2}$$ is confirmed as correct. Participants emphasize the necessity of using 4-vectors over 3-vectors due to their proper transformation under Lorentz transformations, which is essential for maintaining covariance in relativistic physics.

PREREQUISITES
  • Understanding of Lorentz transformations in special relativity
  • Familiarity with Minkowski spacetime concepts
  • Knowledge of 4-vectors and their properties
  • Basic principles of energy and momentum in physics
NEXT STEPS
  • Study the derivation of the invariant interval in special relativity
  • Learn about the implications of Lorentz covariance in physics
  • Explore the geometric interpretation of 4-vectors in Minkowski spacetime
  • Investigate the relationship between energy, momentum, and mass in relativistic contexts
USEFUL FOR

Students and professionals in physics, particularly those focusing on special relativity, theoretical physicists, and anyone interested in the mathematical framework of relativistic mechanics.

Frank Castle
Messages
579
Reaction score
23
As I understand it one is forced to use 4-vectors since we require objects that transform as vectors under application of Lorentz transformations and 3-vectors do not (technically they do under rotations, but not under boosts). Equivalenty, if one starts off with Minkowski spacetime from the outset, then 4-vectors are the natural quantities to consider since we are already dealing with a 4-dimensional space.

Given this, one then introduces the notion of 4-momentum, defining it as $$p^{\mu}=m\frac{dx^{\mu}}{d\tau}=\gamma m\frac{dx^{\mu}}{dt}$$ where ##x^{\mu}## is the position 4-vector, ##\tau## is the proper time, ##t## is the coordinate time and ##\gamma =\frac{1}{\sqrt{1-v^{2}/c^{2}}}## is the Lorentz factor (with ##\mathbf{v}## the relative velocity between two inertial frames).

I'm trying to reason why the zeroth component of 4-momentum of a particle, i.e. ##p^{0}## is proportional to its energy ##E##, $$p^{0}=\frac{E}{c}$$ where ##c## is the speed of light.

Can one do this as follows.
We first note that, by definition, ##p^{0}=\gamma mc=\frac{mc}{\sqrt{1-v^{2}/c^{2}}}##, and so for ##v<<c## we have that $$ p^{0}=\gamma mc=\frac{mc}{\sqrt{1-v^{2}/c^{2}}}\approx mc(1+\frac{v^{2}}{2c^{2}})=\frac{1}{c}(mc^{2}+\frac{mv^{2}}{2})$$ We recognise ##\frac{mv^{2}}{2}## as the kinetic energy of a non-relativistic particle and hence interpret ##mc^{2}+\frac{mv^{2}}{2}## as the total energy of the particle in the non-relativistic limit. Thus we are motivated to interpret ##p^{0}## as being proportional to the energy of the particle, i.e. ##p^{0}=\frac{E}{c}##.

Given this we can then proceed to derive the relativistic energy-momentum relation: $$ (p^{0})^{2}=\frac{E^{2}}{c^{2}}=\gamma^{2}m^{2}c^{2}= \frac{m^{2}c^{2}}{1-v^{2}/c^{2}}= \frac{m^{2}c^{2}+m^{2}v^{2}-m^{2}v^{2}}{1-v^{2}/c^{2}}\\ =\frac{m^{2}v^{2}}{1-v^{2}/c^{2}}+m^{2}\frac{c^{2}-v^{2}}{1-v^{2}/c^{2}}=p^{2}+m^{2}c^{2}$$ and hence $$E^{2}=m^{2}c^{4}+p^{2}c^{2}.$$

Have I understood this concept correctly? Is the derivation correct? I'd really appreciate any feedback.
 
Physics news on Phys.org
Looks good to me.
 
PeroK said:
Looks good to me.

OK great, thanks for taking a look.

One other thing that I'm slightly unsure about. Is it possible to motivate the usage of four-vectors (as opposed to three-vectors) in special relativity without first introducing Minkowski spacetime? I mean, if one introduces the notion of spacetime first, then it is natural to consider four-vectors as opposed to three-vectors since the spacetime is four-dimensional from the outset (time being considered as a fourth dimension as it is no longer absolute and as such frame-dependent an hence each coordinate frame has its own temporal coordinate, to distinguish the time in that frame. Thus each frame is labeledby a set of four coordinates, would this be correct?), but are there any other intuitive heuristic arguments as to why four-vectors are the correct objects to consider? (I've heard that it's partly because three-vectors do not transform as vectors under Lorentz transformations, but I'm not sure if this is correct or not?)
 
Last edited:
Frank Castle said:
OK great, thanks for taking a look.

One other thing that I'm slightly unsure about. Is it possible to motivate the usage of four-vectors (as opposed to three-vectors) in special relativity without first introducing Minkowski spacetime? I mean, if one introduces the notion of spacetime first, then it is natural to consider four-vectors as opposed to three-vectors since the spacetime is four-dimensional from the outset, but are there any other intuitive heuristic arguments as to why four-vectors are the correct objects to consider? (I've heard that it's partly because three-vectors to not transform as vectors under Lorentz transformations, but I'm not sure if this is correct or not?)

I would say that four-vectors arise naturally both geometrically and algebraically. Once you have the Lorentz Transformation involving four variables, it's natural to consider four-vectors, purely in terms of 4-tuples: ##(t, x, y, z)##. The algebra and the geometry go hand-in-hand, each being equivalent to the other.

If you wanted, you could do SR algebraically without considering the geometric spacetime view. It would be a bit like doing complex numbers purely algebraically, and never considering the geometry of the complex plane. But, of course, it's much more powerful to have the algebra and geometry at your disposal.
 
PeroK said:
I would say that four-vectors arise naturally both geometrically and algebraically. Once you have the Lorentz Transformation involving four variables, it's natural to consider four-vectors, purely in terms of 4-tuples: (t,x,y,z)(t,x,y,z)(t, x, y, z). The algebra and the geometry go hand-in-hand, each being equivalent to th

So would it be correct to say that it is natural to consider 4-vectors since Lorentz transformations transform both temporal and spatial coordinates, so in order to construct Lorentz covariant and invariant objects we must consider 4-tuples, i.e. four component vectors?!

Also, would what I said about why time is considered a fourth dimension in special relativity correct? i.e. "time being considered as a fourth dimension as it is no longer absolute and as such frame-dependent an hence each coordinate frame has its own temporal coordinate, to distinguish the time in that frame. Thus each frame is labeledby a set of four coordinates, would this be correct?"

What about the statement that 3-vectors don't transform correctly, i.e. as vectors, under Lorentz transformations? I think I read this somewhere but can't for the life of me remember where.
 
Frank Castle said:
So would it be correct to say that it is natural to consider 4-vectors since Lorentz transformations transform both temporal and spatial coordinates, so in order to construct Lorentz covariant and invariant objects we must consider 4-tuples, i.e. four component vectors?!

Also, would what I said about why time is considered a fourth dimension in special relativity correct? i.e. "time being considered as a fourth dimension as it is no longer absolute and as such frame-dependent an hence each coordinate frame has its own temporal coordinate, to distinguish the time in that frame. Thus each frame is labeledby a set of four coordinates, would this be correct?"

What about the statement that 3-vectors don't transform correctly, i.e. as vectors, under Lorentz transformations? I think I read this somewhere but can't for the life of me remember where.

I'm not sure what you are worried about. I think you know all this stuff. Time to move on!
 
PeroK said:
I'm not sure what you are worried about. I think you know all this stuff. Time to move on!

You're right, I should stop dwelling on things and trying to "trip" myself up.
 
Frank Castle said:
OK great, thanks for taking a look.

One other thing that I'm slightly unsure about. Is it possible to motivate the usage of four-vectors (as opposed to three-vectors) in special relativity without first introducing Minkowski spacetime? I mean, if one introduces the notion of spacetime first, then it is natural to consider four-vectors as opposed to three-vectors since the spacetime is four-dimensional from the outset (time being considered as a fourth dimension as it is no longer absolute and as such frame-dependent an hence each coordinate frame has its own temporal coordinate, to distinguish the time in that frame. Thus each frame is labeledby a set of four coordinates, would this be correct?), but are there any other intuitive heuristic arguments as to why four-vectors are the correct objects to consider? (I've heard that it's partly because three-vectors do not transform as vectors under Lorentz transformations, but I'm not sure if this is correct or not?)

Yes, you can derive the invariant interval equation, the energy-momentum relation, etc., without recourse to four-vectors. They're just "magnitudes" without direction at that point, each in the form of ##(ds \text{ something})^2 = (c \, dt \text{ something})^2 - (d \vec r \text{ something})^2##. The left side is always Lorentz-invariant (because ##ds## is), and the four terms on the right side always obey the Lorentz transformation (because ##c \, dt##, ##dx##, ##dy##, and ##dz## do). Add spacetime direction to the mix, and you've got the four-vector formalism.
 
I also think that, geometry aside, four-vectors are convenient conceptually and algebraically. It's nice to have all that information wrapped up in a single symbol.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 6 ·
Replies
6
Views
836
  • · Replies 55 ·
2
Replies
55
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
963