MHB ZZZZZzzz's question at Yahoo Answers regarding a mixing problem

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Mixing
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Physical application of calculus?

A lake has a volume of 10^6 m^3 and an initial pollution of 2 grams per cubic metre. Every day a river flows in 2 x 10^4 m^3 of a lower pollution of 0.2 gram per cubic metre, and the same amount of water flows out to another river. Assume the water is perfectly mixed at any time. How long will it take to reduce the pollution to 1 gram per cubic metre?
thanks

Additional Details:
ans: 40.5 days

I have posted a link there to this thread so the OP can find my work.
 
Mathematics news on Phys.org
Hello ZZZZZzzz,

We have an initial amount of pollution in the lake, and we have pollution flowing in and pollution flowing out. So we may model the amount of pollution $P$ in the lake at time $t$ with the initial value problem:

$$\frac{dP}{dt}=0.2\cdot2\cdot10^4-\frac{P(t)}{10^6}\cdot2\cdot10^4$$ where $$P_0=2\cdot10^6$$

The ODE may be simplified to:

$$\frac{dP}{dt}=4000-\frac{P(t)}{50}$$

Writing this ODE in standard linear form, we have:

$$\frac{dP}{dt}+\frac{1}{50}P(t)=4000$$

Multiplying through by an integrating factor of $$e^{\frac{t}{50}}$$, we obtain:

$$e^{\frac{t}{50}}\frac{dP}{dt}+\frac{1}{50}e^{\frac{t}{50}}P(t)=4000e^{\frac{t}{50}}$$

Observing the left side is the differentiation of a product, we may write:

$$\frac{d}{dt}\left(e^{\frac{t}{50}}P(t) \right)=4000e^{\frac{t}{50}}$$

Integrating, there results:

$$e^{\frac{t}{50}}P(t)=200000e^{\frac{t}{50}}+C$$

Solving for $P(t)$, we have:

$$P(t)=200000+Ce^{-\frac{t}{50}}$$

To determine the parameter $C$, we may use the initial value:

$$P(0)=200000+C=2000000\implies C=1800000$$

Hence:

$$P(t)=200000+1800000e^{-\frac{t}{50}}=200000\left(1+9e^{-\frac{t}{50}} \right)$$

Now, to determine when the pollution concentration is down to 1 gram per million cubic meters, we set $P(t)=1000000$ and solve for $t$:

$$1000000=200000\left(1+9e^{-\frac{t}{50}} \right)$$

$$5=1+9e^{-\frac{t}{50}}$$

$$\frac{9}{4}=e^{\frac{t}{50}}$$

Convert from exponential to logarithmic form:

$$\frac{t}{50}=\ln\left(\frac{9}{4} \right)$$

$$t=50\ln\left(\frac{9}{4} \right)\approx40.5465108108164$$

Thus, we find it will take about 40.5 days for the pollution concentration to reach the desired level.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top