Proof this inequality using Chebyshev's sum inequality

playboy

Homework Statement



Let a,b,c,d,e be positive real numbers. Show that

\displaystyle{\frac{a}{b+c}} + \displaystyle{\frac{b}{c+d}} + \displaystyle{\frac{c}{d+e}} + \displaystyle{\frac{d}{e+a}} +\displaystyle{\frac{e}{a+b}} \geq \displaystyle{\frac{5}{2}}



Homework Equations



Chebyshev's sum inequality:
http://en.wikipedia.org/wiki/Chebyshev's_sum_inequality



The Attempt at a Solution



Assume: a > b > c > d > e

Then: a+b > a+e > b+c > c+d > d+e

Or: \displaystyle{\frac{1}{d+e}} \geq \displaystyle{\frac{1}{c+d}} \geq \displaystyle{\frac{1}{b+c}} \geq \displaystyle{\frac{1}{a+e}} \geq \displaystyle{\frac{1}{a+b}}


Hence, we have:

a \geq b \geq c \geq d \geq e \geq

\displaystyle{\frac{1}{d+e}} \geq \displaystyle{\frac{1}{c+d}} \geq \displaystyle{\frac{1}{b+c}} \geq \displaystyle{\frac{1}{a+e}} \geq \displaystyle{\frac{1}{a+b}}


But...this \sum a_{k}*b_{k} is NOT matching up like it what the question is asking...

Am I arranging these numbers wrong?


What I am trying to say is:


\displaystyle{\frac{a}{d+e}} + \displaystyle{\frac{b}{c+d}} + \displaystyle{\frac{c}{b+c}} + \displaystyle{\frac{d}{a+e}} + \displaystyle{\frac{e}{a+b}}

IS NOT EQUAL TO

\displaystyle{\frac{a}{b+c}} + \displaystyle{\frac{b}{c+d}} + \displaystyle{\frac{c}{d+e}} + \displaystyle{\frac{d}{e+a}} +\displaystyle{\frac{e}{a+b}} \geq \displaystyle{\frac{5}{2}}
 
Last edited by a moderator:
Physics news on Phys.org
First, you can't assume a > b > c > d > e, since the sum on the left is not invariant under arbitrary permutations (it is invariant under cyclic permutations (abcde)k though). Also, how are you getting a+e > b+c? That's not a valid inference. And yes, the thing you end up with doesn't match up anyways.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top