Stationary Points of U(x,y) | Locate Minima, Maxima & TS

  • Thread starter Thread starter adam1
  • Start date Start date
  • Tags Tags
    State Transition
adam1
Messages
2
Reaction score
0
U(x,y)=Asin(pi*x/Lx) + Bcos(pi*y/Ly) where A,B,Lx,Ly are positive

1 Locate all the stationary points (i.e. minima, maxima and transition states
(TS)) for this potential.

a. What is the periodicity of U(x,y) along the two directions?

b. Derive the TS barriers that an atom diffusing on the surface would
have to surmount during a “jump” between two minima as a function
of A and B.

c. Using information about the shape of U(x,y), propose possible
analytical curves separating the basin of attraction of adjacent minima.
 
Physics news on Phys.org
Per the rules of the forum, you have to show some workings...
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top