Energy-momentum tensor for a scalar field (sign problem)

knobelc
Messages
14
Reaction score
0
Hi

I have a small subtle problem with the sign of the energy-momentum tensor for a scalar field as derived by varying the metric (s.b.). I would appreciate very much if somebody could help me on my specific issue. Let me describe the problem in more detail:

I conform to the sign convention g_{\mu \nu} = (+,-,-,-). The Lagranagian for a real scalar field is

\mathcal{L} = \frac{1}{2} \dot{\Phi}^2- (\nabla \Phi)^2 - V(\Phi ) = \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ).

From Noether Theorem we find the energy-momentum tensor


T^{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial_\mu \Phi)} \: \partial^\nu \Phi - \mathcal{L} g^{\mu \nu} = \partial^\mu \Phi \partial^\nu \Phi - \mathcal{L} g^{\mu \nu}.

Now I want to derive this via varying the action

S = \int \mathcal{L} \sqrt{-g}\; dx^4

in respect to g_{\mu \nu}. In particular it holds

\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = -\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.

T_{\mu \nu} is defined so that varying the action derived from the total Lagrangian

\mathcal{L_{\rm tot}} = \frac{1}{16\pi G} R + \mathcal{L}

yields the Einstein field equations

G_{\mu \nu} = 8\pi G T_{\mu \nu}.

(Note that

\delta\int\frac{1}{16\pi G} R \sqrt{-g}\; dx^4 = \int G_{\mu \nu} \delta g^{\mu \nu}\sqrt{-g}\; dx^4,

therefore the - sign in the definition of T_{\mu \nu}.)

Now let's vary the lagrangian of the scalar field:

\delta \int \mathcal{L} \sqrt{-g}\; dx^4
= \int \delta(\mathcal{L}) \sqrt{-g} + \mathcal{L} \delta(\sqrt{-g})\; dx^4
= \int \delta \left( \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ) \right) \sqrt{-g} + \mathcal{L} \left(-\frac{1}{2} g_{\mu \nu} \delta g^{\mu \nu}\right) \sqrt{-g}\; dx^4
= \frac{1}{2}\int \left( \delta g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \delta g^{\mu \nu} \right) \sqrt{-g}\; dx^4
= \frac{1}{2}\int \left(\partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \right) \delta g^{\mu \nu} \sqrt{-g}\; dx^4.

Comparing this with the definition of the T_{\mu \nu} yields

T_{\mu \nu} = -\partial_\mu \Phi \partial_\nu \Phi + \mathcal{L} g_{\mu \nu}

leading to the opposite sign as derived by the Noether Theorem.

I would appreciate very much if somebody could explain why I get the sign wrong. I know this is a subtle (and possibly unimportant) issue but getting the wrong sign without understanding why gives a bad feeling. Thank you for any help!
 
Physics news on Phys.org
According to Wald the Klein-Gordon energy-momentum tensor from Noether's theorem agrees with the Klein-Gordon energy-momentum tensor from varying the metric "up to a numerical factor." I do not know if the numerical factor is -1.

Wald says that in others cases, there is less agreement, and it is the energy-momentum arrived at by varying g that appears on the right of Einstein's equation.

If you have Wald, look near the bottom of page 457.

I first ran into differences between the canonical and symmetric energy-momentum tensors in section 12.10 of Jackson.
 
Last edited:
I think, I got the reason for the wrong sign. Since I used the signature g_{\mu \nu} = (+,-,-,-) my definitions of T^{\mu \nu} and \mathcal{L_{\rm tot}} are not correct. With my signature the correct expressions read as

\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = +\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.

and

\mathcal{L_{\rm tot}} = -\frac{1}{16\pi G} R + \mathcal{L}.

With this I get everything right. :-)
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top