STRACTWhy Do We Always Rescale the Null Direction in Conformal Compactification?

  • Thread starter Thread starter paweld
  • Start date Start date
  • Tags Tags
    Compactification
paweld
Messages
253
Reaction score
0
Let's consider for example compactification of Minkowski spacetime or
Kruskal extension of Schwartzschild. They are quite similar because in both cases
we rescale the null direction.
I wonder why we always rescale the null direction, not simply x or t.
 
Physics news on Phys.org
paweld said:
Let's consider for example compactification of Minkowski spacetime or
Kruskal extension of Schwartzschild. They are quite similar because in both cases
we rescale the null direction.
I wonder why we always rescale the null direction, not simply x or t.

Re-scaling the null direction has this advantage that since one side is equal to zero, then the re-scaling factor won't change the direction but rather compacts (or maybe expands) the direction conformally. However, re-scaling x or t does not preserve the general form of metric though wouldn't change its nature, too if the re-scaling factor isn't coordinate-dependent! In the latter case (a factor being independent of coordinates), one can make use of the re-scaling of x or t as well!

AB
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top