Cockroft Walton Voltage Multiplier Problems

AI Thread Summary
A user is experiencing significant issues with their Cockcroft-Walton generator project, aiming for an output of -40kV but only achieving -47VDC initially, and later -205VDC after increasing stages and frequency. They have calculated the expected output using specific equations but are confused by the discrepancies between theoretical and actual results. The user suspects that the low input voltage from their function generator is a major factor in the poor performance and considers the possibility of incorrect assumptions regarding load current and capacitance. They are seeking assistance to troubleshoot the circuit and clarify the equations used. The discussion highlights the challenges faced in high-voltage projects and the importance of accurate calculations and component selection.
Fronzbot
Messages
58
Reaction score
0
Hey everyone.

So I like to have electronics projects going on to keep me on my toes during the academic year and my project I chose for fall ended up being a Cockroft Walton Generator. Basically, I was just looking to make a simple negative ion generator from it. I finally got the parts in today but am having SEVERE problems getting it to work properly or even figuring out what the hell is going on. This is my first HV project, so I'm pretty unfamiliar with this territory. I'm hoping someone out there can help me figure this stuff out.

First, the calculations. I used http://www.blazelabs.com/e-exp15.asp" as a reference.

I wanted an output of -40kV at a current of 0.845mA. I chose 20nF as my capacitance and, as per the suggestion on the site, I made C1 & C2 = nC, C3 & C4 = (n-1)C etc... To save on cost (since I'm a poor college student) I chose 5 stages and was just going to use the input from my Function Generator which has a peak of about 5V and the frequency I settled on was 100Hz.

V_{out} = 2n * V_{peak} - (I_{load}/(6fC) * (4n^{3} + 3n^{2} - n))
V_{out}= 2(5) * 5 - 0.000845/(6*100*20 \times 10^{-9}) * (4(5)^{3} + 3(5)^{2} - 5)
V_{out} = 50 - 70.4166667 \times 570
<br /> V_{out} = -40087.5V

V_{ripple} = I_{load}/fC = 0.000845/(100 \times 20 \times 10^{-9}) = 422.5V<br />

So those values were perfectly fine for me. When I attached it up, though, it was only outputting -47VDC. Problem. I tried increasing the frequency and the max output I could get was -101VDC at an 8.3kHz Square Wave. I then added 5 more stages in (Stages 1 and 2 with 100nF, 3 and 4 with 80nF, 5 and 6 with 60nF, 7 and 8 with 40nF and 9 and 10 with 20nF) This time I got it up to -205VDC with an 83.2kHz Square wave.

I'm confused.

I've concluded that my output problem likely lies with the fact that I have such a small input voltage and if the circuit was attached to a more beefy supply, such as mains*, the output would be much greater. I've also concluded that these equations don't make any sense. I see no flaw with my arithmetic and so there are, as I see it, only two possibilities:
1) The equations are wrong
2) I have assumed something I shouldn't (such as Load Current, capacitance, etc)

Number 2 is the more likely case.

So anybody out there that can help me out?

*I should mention that that was just an example. I'm not going to connect this to mains for a few reasons, one of them being I don't have an isolation transformer on hand and another is I don't want to mess around with the mains, especially in my apartment.
 
Last edited by a moderator:
Engineering news on Phys.org
By coincidence, another post today has a circuit that might suit you.

See the excellent simulation by Bob S in this thread, :
https://www.physicsforums.com/showthread.php?t=429932

This appears to run at about 150 Hz, but this could be increased by decreasing the value of the 0.39uF capacitors.

You would attach your CW circuitry at the bottom of the diagram, on the secondary of the transformer.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...

Similar threads

Back
Top