Cartesian equation for the Magnetic field resulting from a single current loop?

AI Thread Summary
The discussion focuses on converting the magnetic field equation from cylindrical to Cartesian coordinates for a single current loop. The current equation is expressed in cylindrical coordinates as \vec{B}={Brc,0,Bz}, which lacks an angular component. The main challenge is that the conversion leads to a magnetic field with a zero y-component, raising questions about the validity of this outcome. The user seeks clarification on whether this is correct and how to express the cylindrical unit vector in Cartesian terms. The conversation emphasizes the need for a successful conversion to facilitate plotting in Matlab.
kilianod5150
Messages
2
Reaction score
0
Hello

I am carrying out some analysis on the magnetic field generated over a 3D region by a single current loop. The present form of the equations is in cylindrical coordinates and is as follows
\vec{B}={Brc,0,Bz}
There is no angular component in this present from.
Note: The following website contains the formulas in question:
http://www.netdenizen.com/emagnet/offaxis/iloopoffaxis.htm

My question is as follows. How could one convert a complex cylindrical equation such as this to Cartesian coordinates? The main aim of this is to plot the fields in Matlab, if the equations were in cartesian form it would simply greatly my analysis.

The main problem I seem to encounter is that since there is no angle component, using conversions such as x=r*cos(theta) and y=r*sin(theta) do n0t seem to make sense as it would imply that there is only an x component and no y component.

I tried using Mathematica to convert the equations using the ConvertToCartesian command to no avail.

Any help with this problem would be greatly appreciated.

Regards

Kilian
 
Physics news on Phys.org
Just use r=\sqrt{x^2 + y^2}.
 
Thanks for the reply, I had thought of using that but i still have the problem where there is no y component of the magnetic field.
In other words converting B(rc,phi,z)=(Brc(rc,theta,z),0,Bz(rc,theta,z)) would result in B(x,y,z)=(Bx(x,y,z),0,Bz(x,y,z)). The By(x,y,z) component is zero, is this correct? Or is there a way to expand the rc unit vector into x and y parts?
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top