Welcome Slacker !
You may like to view antimatter as Feynman understood it : antimatter is ordinary matter traveling backwards in time.
Hard to swallow. Well, it is very efficient to picture it this way, and besides, nobody could tell you "you are wrong" with this conception. Imagine a one + one dimensional world : there is one time dimension, and only one space dimension. It is very convenient, because spacetime is reduced to a plane, and we can actually visualize it. Now, there is only one particle around. What do we see : a single curve. The particle moving in spacetime draws a curve. (This is the same in actual 3+1 diemsional spacetime, we just cannot visualize spacetime, that would require to go in a 5 dimensional space and contemplate the 4-dim hypersurface with a curve in it. See, let us stick to the 1+1 world for now.)
OK. In order to make the discussion easier, the time axis is vertically oriented, future goes up. The unique space dimension is horizontal. Now our fuzzy particle decides to change direction in time. Let us say, it should emit a photon in order to conserve energy and momentum, but let us not care about this outgoing photon for now. It goes backwards in time for a while (down), then meets another photon, and reverses once again to go back forwards in time (up). Let us also not care for now about the ingoing photon required to make the second flow reversal. We can consider 3 regions : in the far past, there is only our single and sad particle going towards the future. Likewise, in the far future, there is the same sad single curve. But in between somewhere, we see two curves ! As it appears to us, they look like different particles. Besides, the curve corresponding to our buddy traveling backwards in time has all the properties of an antiparticle : if for instance our particle carries electrical charge, this charge will seem to us to be opposite when the flow is towards the past !
Now let us go back to our photons : there are two photons in the plane. As it seems to us, one photon in the lower part is creating a particle-antiparticle pair, the particle escapes to infinity, and the antiparticle eventually meets an identical particle and this meeting produces a decay in the outgoing photon.
The photon carry no quantum number such as electrical charge, or other kinds of charges (except for angular momentum, but this is also linked to spatial movement, so it does not need to be conserved at the level of internal charges). You see that you need
exactly the opposite quantum numbers to produce annihilation. And from the Feynman-backwards-in-time-flow view point, this is obvious.
