Bivariate Normal Distribution, contour ellipse containing given % samples?

AI Thread Summary
The discussion focuses on determining the probability p for which an ellipse in a bivariate Gaussian distribution contains a specified percentage of samples. The user seeks a method to find the p value corresponding to 75%, 95%, and 99% of samples in two dimensions, akin to known intervals in one-dimensional normal distributions. They are open to using numerical approximations in Python with libraries like NumPy and SciPy, rather than requiring an analytic formula. A mathematical expression involving the chi-square distribution and covariance matrix is provided to describe the area of the ellipse. The conversation highlights the complexity of calculations and the desire for a simpler approach to visualize contour plots.
codiloo
Messages
2
Reaction score
0
Given a bivariate gaussian distribution,
I'm attempting to find the probability p for which
the ellipse of all points (x,y) for which P(X = x, Y= y) = p contains
a given % of the samples drawn from the distribution.

I want the 2d equivalent for the 1 dimensional case:
given a normal distribution N(0,1):
e.g interval between points with p = 0.24197072 contains 68.2% of all samples
e.g interval between points with p = 0.05399097 contains 95.4% of all samples
e.g interval between points with p = 0.00013383 contains 99.6% of all samples
in two dimensions these interval boundries become an ellipse and I'm interested in finding the p value corresponding to a given % (contained samples in contour ellipse with p) value in the 2 dimensional case.

Some extra info:
A matlab, python (using numpy, scipy?) numerical approximation is ok, I don't need an analytic formula.

Actually I just want to draw the ellipses containing 75%, 95%, 99% of the samples in python (using matlibplot) for a given gaussian distribution (varying mean & covariance). I know how to do this if I obtain p first (contour plots).

Thank you for reading my question and I hope you can help.
 
Physics news on Phys.org
Hi codiloo,

The probability hyper-ellipsoid hyper-volume for a multivariate normal follows

(x-μ)^T \Sigma^{-1}(x-μ) ≤ χ^2_k(p)

Where x is a k-dimensional vector, μ is the k-dimensional mean vector, Ʃ is the variance-covariance matrix and χ^2_k(p) is the p quantile of the chi-square distribution with k degrees of freedom.

When k = 2 dimensions the expression represents the area of the ellipse you are asking for, and χ^2_2 behaves as an exponential distribution.
 
Last edited:
After a huge calculation involving rotating co-ordinates I ended up with
P[(x, y) lies inside the contour pdf(x,y) = k] = 1 - 2πkD, where D is the determinant of the covariance matrix, i.e. = √(σ12σ22 - ρ4).
Note e.g. that the peak pdf value is 1/2πD
If it's right, there must be an easier way.
 
Back
Top