Rolling Friction and Bicycle Tires, Mastering physics problem.

AI Thread Summary
The discussion centers on calculating the coefficient of rolling friction (mu_r) for a bicycle tire inflated to 40 psi, which travels 18.1 meters before its speed is halved. Given that the other tire at 105 psi travels 93.1 meters, the difference in distances indicates that higher pressure results in lower rolling friction. The net horizontal force is attributed solely to rolling friction, and the gravitational acceleration is specified as 9.80 m/s^2. Participants are seeking assistance in solving the physics problem related to these parameters.
kenau_reveas
Messages
39
Reaction score
0
Information given:

Two bicycle tires are set rolling with the same initial speed of 3.60 m/s along a long, straight road, and the distance each travels before its speed is reduced by half is measured. One tire is inflated to a pressure of 40 {\rm psi} and goes a distance of 18.1 m; the other is at 105 {\rm psi} and goes a distance of 93.1 m. Assume that the net horizontal force is due to rolling friction only and take the free-fall acceleration to be g = 9.80 m/s^2.

Question 1:

What is the coefficient of rolling friction mu_r for the tire under low pressure?



i really don't have a clue about this question.
 
Physics news on Phys.org
Anyone? please help..
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top