Understanding the Block Test for Convergence of Dyadic Series

emilya
Messages
1
Reaction score
0
Can anyone give me any help on how to get started, or how to do this problem?
---
Prove that if the terms of a sequence decrease monotonically (a_1)>= (a_2)>= ...
and converge to 0 then the series [sum](a_k) converges iff the associated
dyadic series (a_1)+2(a_2)+4(a_4)+8(a_8)+... = [sum](2^k)*(a_2^k) converges.

I call this the block test b/c it groups the terms of the series in blocks
of length 2^(k-1).
----
thank you!
 
Physics news on Phys.org
Can you show that this pair of inequalities is true:

2 \times \sum_{i=1}^{2^k} a_n \geq \sum_{i=0}^{k} \left( \sum_{j=2^{i-1}}^{2^i} a_{2^{i-1}} \right) \geq \sum_{i=1}^{2^k} a_n

(The middle expression is the dyadic series.)
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top