VinnyCee
- 486
- 0
Homework Statement
Transform the vector below from Cartesian to Cylindrical coordinates:
Q\,=\,\frac{\sqrt{x^2\,+\,y^2}}{\sqrt{x^2\,+\,y^2\,+\,z^2}}\,\hat{x}\,-\,\frac{y\,z}{x^2\,+\,y^2\,+\,z^2}\,\hat{z}
Homework Equations
Use these equations:
A_{\rho}\,=\,\hat{\rho}\,\cdot\,\overrightarrow{A}\,=\,A_x\,cos\,\phi\,+\,A_y\,sin\,\phi
A_{\phi}\,=\,\hat{\phi}\,\cdot\,\overrightarrow{A}\,=\,-A_x\,sin\,\phi\,+\,A_y\,cos\,\phi
A_z\,=\,A_z
x\,=\,\rho\,cos\,\phi
y\,=\,\rho\,sin\,\phi
The Attempt at a Solution
Q_{\rho}\,=\,\frac{\sqrt{\left(\rho\,cos\,\phi\right)^2\,+\,\left(\rho\,\sin\,\phi\right)^2}}{\sqrt{\left(\rho\,cos\,\phi\right)^2\,+\,\left(\rho\,\sin\,\phi\right)^2\,+\,z^2}}\,cos\,\phi
Q_{\rho}\,=\,\frac{\rho}{\sqrt{\rho^2\,+\,z^2}}\,cos\,\phi
Q_{\phi}\,=\,-\,\frac{\rho}{\sqrt{\rho^2\,+\,z^2}}\,sin\,\phi
Q_z\,=\,-\,\frac{z\,\rho\,sin\,\phi}{\rho^2\,+\,z^2}
Does the above look correct?
Last edited: