Numerical evaluation of Sommerfeld Integral

aro
Messages
8
Reaction score
0
In EM scattering problems in inhomogeneous (layered) media one may encounter Sommerfeld integrals of the form:

\int_{0}^{\infty}J_{n}(k_{\rho},\rho)k_{\rho}^{n+1}G(k_{\rho})dk_{\rho}

where J is a Bessel function and G is a spectral Green's function, \rho is source-observer distance and in my case n=0.
Generally the Green's function results in a branch cut on the real axis and poles either on or slightly off the real axis.
As I see it the integrand contains the mode structure of the field and the integration over wavevectors (k) leads to something like a total 'self-energy' from which dispersion and photonic mode density can be obtained.

I am trying to obtain numerical results for an integral of this type in the context of the problem of decay of an excited molecule above a metal dielectric interface (allowing creation of surface plasmons, hence the pole).

If anyone could give me pointers on how to approach this specific integral or, more generally, how to deal with poles and branch cuts in numerical integration, I would greatly appreciate it.

Thanks,
AR
 
Physics news on Phys.org
Hi,

We have recently released the ND-SDP package, which is a free Matlab package for fast and accurate evaluation of 2D Sommerfeld integrals:
http://webee.technion.ac.il/people/leviatan/ndsdp/index.htm

The publication related to the code, "A Numerical Methodology for Efficient Evaluation of 2D Sommerfeld Integrals in the Dielectric Half-Space Problem" and references therein could serve as an introduction to the subject. It will appear soon in IEEE Antennas and Propagation, and can already be viewed at:
http://ieeexplore.ieee.org/xpl/tocpreprint.jsp?isnumber=4907023&punumber=8

HTH
Amit
 
Last edited by a moderator:
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top