View Single Post
kurious
#1
Aug6-04, 08:18 AM
P: 653
The Clay Institute wants a proof that an initially smooth flowing fluid stays free of turbulence in the long run.
Can the Navier-Stokes equations, which describe a fluid that initially has no turbulence in it, be equivalent to a set of equations describing vortices,
with the vortices cancelling each other out.If so, then could the problem be reduced to that of some vortices which are initially perturbed slightly, so they don't cancel,but which evolve in such a way that at a later time they do cancel out one another's effects?
Phys.Org News Partner Science news on Phys.org
Sapphire talk enlivens guesswork over iPhone 6
Geneticists offer clues to better rice, tomato crops
UConn makes 3-D copies of antique instrument parts