Proof Inequalities: Find the Solution

  • Thread starter Thread starter phillyolly
  • Start date Start date
  • Tags Tags
    Inequalities Proof
phillyolly
Messages
157
Reaction score
0

Homework Statement




The problem and my half solution is given. How do I proceed with the proof?
 

Attachments

  • attempt.jpg
    attempt.jpg
    9.1 KB · Views: 426
Physics news on Phys.org
Try using the triangle inequality. Your proof is flawed.

Or use a proof by contradiction.
 
Last edited:
It is easy to find out when equality holds for the triangle inequality. This is key to your problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top