View Single Post
creepypasta13
creepypasta13 is offline
#1
Nov5-11, 12:29 PM
P: 375
1. The problem statement, all variables and given/known data

So I'm having some difficulty with my QFT assignment. I have to solve the following problem.

In three spacetime dimensions (two space plus one time) an antisymmetric Lorentz tensor
F[itex]^{\mu\nu}[/itex] = -F[itex]^{\nu\mu}[/itex] is equivalent to an axial Lorentz vector, F[itex]^{\mu\nu}[/itex] = e[itex]^{\mu\nu\lambda}[/itex]F[itex]_{\lambda}[/itex]. Consequently, in 3D
one can have a massive photon despite unbroken gauge invariance of the electromagnetic
field A[itex]_{\mu}[/itex]. Indeed, consider the following Lagrangian:

L = -(1/2)*F[itex]_{\lambda}[/itex]F[itex]^{\lambda}[/itex] + (m/2)*F[itex]_{\lambda}[/itex]A[itex]^{\lambda}[/itex] (6)

where

F[itex]_{\lambda}[/itex](x) = (1/2)*[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex]F[itex]^{\mu\nu}[/itex] = [itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex],

or in components, F[itex]_{0}[/itex] = -B, F1 = +E[itex]^{2}[/itex], F[itex]_{2}[/itex] = -E[itex]^{1}[/itex].

(a) Show that the action S = [itex]\int[/itex]d[itex]^{3}[/itex]x*L is gauge invariant (although the Lagrangian (6) is not invariant).



So I tried substituting A[itex]^{\lambda}[/itex] -> A[itex]^{\lambda'}[/itex] = A[itex]^{\lambda}[/itex] + [itex]\partial[/itex][itex]^{\lambda}[/itex][itex]\Lambda[/itex]
and F[itex]^{\lambda}[/itex] -> F[itex]^{\lambda'}[/itex] = [itex]\epsilon[/itex][itex]^{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]_{\mu}[/itex]A[itex]_{\nu}[/itex]'

then I obtained L' = L + (1/2)*[ F[itex]_{\lambda}[/itex] [itex]\epsilon^{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]_{\mu}[/itex] [itex]\partial[/itex][itex]_{\nu}[/itex] [itex]\Lambda[/itex] + some other terms]

What I don't understand is how these leftover terms would vanish after being integrated (to obtain S'), but they don't all vanish if they are not integrated (since L is not invariant). Is there some kind of special mathematical trick I have to use? I just don't see how I can integrate terms like [itex]\int[/itex]d[itex]^{3}[/itex]x F[itex]_{\lambda}[/itex][itex]\epsilon[/itex][itex]^{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]_{\mu}[/itex][itex]\partial[/itex][itex]_{\nu}[/itex][itex]\Lambda[/itex]
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes