Wigner's Theorem/Antiunitary Transformation

  • Thread starter Thread starter thoughtgaze
  • Start date Start date
  • Tags Tags
    Transformation
thoughtgaze
Messages
74
Reaction score
0
So I'm reading Gottfried and Yan's Quantum Mechanics: Fundamentals. On page 284, They state Wigner's Theorem and explain the two cases. One transformation leads to no complex conjugation of the expansion coefficients (unitary) and the other leads to a complex conjugation of the expansion coefficients (antiunitary). Anyway, I'm confused when he states the following.

Applying an antiunitary operator twice results in a unitary operation, since the expansion coefficients are conjugated twice. Therefore the antiunitary operators cannot be represented as a continuous group because for any such operation (call it A) there exists the square root of that operation (A_(1/2)), which when applied twice gives an A and thus any A in the continuous group must be unitary for self-consistency.

The part I don't get:

He then goes on to say "by the same argument, candidates for an antiunitary transformation must be such that A^2 reproduces the original description"

I don't understand why it necessarily has to reproduce the original description. I only understand why it has to be a discrete transformation. Anyone care to shed some light?
 
Physics news on Phys.org
I think that Gottfried's reasoning is lacking precision, using hand-waving arguments, fuzzy. Therefore I would not take too seriously his conclusions. But, when taking square leads to the original description, life is certainly easier. That is probably the only reason.
 
thoughtgaze said:
He then goes on to say "by the same argument, candidates for an antiunitary transformation must be such that A^2 reproduces the original description"

Whatever he means, it is not correct. Google "Kramers degeneracy" or read master Wigner himself:http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN002509032
Also non-trivial representations of the group operations C P and T have been discussed.
 
Thank you so much guys, I've been very confused about this.
 
I think a non-trivial but interesting example are magnetic symmetry groups on a lattice.
Consider a regular lattice of magnetic moments pointing up and down alternantly. The inversion of the magnetic moment corresponds to time inversion (and obviously is anti-unitary) but is not a symmetry of the lattice. However a combination of a translation by the nearest moment distance (one unit) and time inversion is (and is anti-unitary). Repeating this operation is equal to a unitary transformation, namely the shift by two units which is certainly different from the identity.
See
http://en.wikipedia.org/wiki/Space_group#Magnetic_groups_and_time_reversal
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...

Similar threads

Replies
42
Views
2K
Replies
3
Views
2K
Replies
87
Views
8K
Replies
1
Views
2K
Replies
12
Views
5K
Back
Top