Screwdriver
- 125
- 0
Homework Statement
We did a lab analyzing this inverting, negative feedback circuit for a 741 op-amp:
We measured the closed-loop gain and phase shift of the signal for several values of the input frequency with R_2/R1=1000,R_2/R1=100 and R_2/R_1=10. The gain curves all looked like horizontal straight lines for low frequencies, and then some sort logarithmic decrease for larger frequencies. The phase shift curves looked sort of similar; they all started with π radian shift for low frequencies with some sort of logarithmic decrease before leveling off slightly near the end.
The problem is, I have no idea what the theory is behind the shape of these curves. We know that the ideal case is G = -\frac{R_2}{R1}, but the max values of the measured gain weren't even close to that. If someone could point me in the direction of a source that deals with the theory (equations) for this circuit's frequency response, that would be great.
Homework Equations
Exactly what I need to know.
The Attempt at a Solution
I did find one pretty good paper here:
http://coe.uncc.edu/~dlsharer/ETEE3212WebCT/SectionH/H7.pdf
On page 4 it gives:
G = \frac{G_o}{1 + s/{\omega_o} + {G_o}{\gamma}}
But I don't think it's for exactly the same circuit as I have, and it doesn't have any equations about phase shifts.