The Mystery: Understanding Resonance vs. Coherence

AI Thread Summary
Resonance and coherence are distinct concepts in wave phenomena. Coherence refers to the phase relationship between waves, while resonance describes how an oscillator responds to an external wave or signal. The two terms can be related, as coherence is necessary for phenomena like standing waves, but they are not interchangeable. Resonance involves waves reflecting back and forth, while coherence pertains to the stability of phase relationships between waves. Understanding these differences clarifies their roles in wave interactions and oscillatory systems.
fractalzen
Messages
10
Reaction score
0
Could someone please concisely explain the difference between resonance and coherence?
 
Physics news on Phys.org
fractalzen said:
Could someone please concisely explain the difference between resonance and coherence?


I could take a whack at it, but I'll refer you to Wikipedia instead for a consensus view.
 
fractalzen said:
Could someone please concisely explain the difference between resonance and coherence?
Perhaps you could explain where you find the two terms indistinguishable. Coherence describes the spread in phases between a number of waves but resonance describes the phenomenon by which an oscillator can be excited by an incident wave or signal. They seem quite distinct, to me.
Take Imaloser's advice and read the two Wiki definitions carefully; you may have come across the terms in some context where there's an implication that they have more in common than they do.
 
I apologize for my ignorance, as my understanding is quite limited, but isn't a harmonic oscillator tracing out a wave pattern in spacetime, so can't resonance be viewed as a wave interacting with an incident wave? Wouldn't there be interference and some degree of coherence/decoherence in such a system? Then wouldn't resonance be referring to coherent interference in spacetime?
 
fractalzen said:
I apologize for my ignorance, as my understanding is quite limited, but isn't a harmonic oscillator tracing out a wave pattern in spacetime, so can't resonance be viewed as a wave interacting with an incident wave? Wouldn't there be interference and some degree of coherence/decoherence in such a system? Then wouldn't resonance be referring to coherent interference in spacetime?

My problem with this is that you seem to be wanting to 'force' two words to be the same thing. The two terms are often used in connection with the same phenomenon, of course, but that's a different matter. Perhaps you have read about some phenomenon and what is written may have caused you to associate the terms more closely together than is normal. I think you need to read around and see how the two terms are used in general and that may resolve your apparent confusion.
You need coherence between two waves for standing waves to occur and, given the right conditions, you can get 'resonance' with a standing wave pattern but in this case, the incident wave is from the same source as the other wave (the reflected wave). You can also produce a standing wave / interference pattern from two independent sources of identical frequency. These would be called coherent sources but in practice, this is only achievable at RF frequencies or lower with very stable oscillators. I doubt that even the levels of coherence achievable with lasers would allow this to be done optically - although someone may be able to quote an example. But that is not resonance - it's just stable interference between two sources. For resonance, the same wave travels back and forth many (thousands, even) times - if you do something to upset the self-coherence of the waves involved (changing the length of the paths involved by vibrating the reflecting ends, for instance) then the resonance will break down.
I could go on . . . .:smile:
In a standing wave, the range of wavelengths (where coherence comes in) involved will affect the 'sharpness' of the standing wave. To get a resonance on a string requires a range of excitation frequencies which are close to the natural modes of the string. Where there are no losses, the frequencies have to be exact.
 
Thread 'Is there a white hole inside every black hole?'
This is what I am thinking. How much feasible is it? There is a white hole inside every black hole The white hole spits mass/energy out continuously The mass/energy that is spit out of a white hole drops back into it eventually. This is because of extreme space time curvature around the white hole Ironically this extreme space time curvature of the space around a white hole is caused by the huge mass/energy packed in the white hole Because of continuously spitting mass/energy which keeps...
Why do two separately floating objects in a liquid "attract" each other ?? What if gravity is an emergent property like surface tension ? What if they both are essentially trying to *minimize disorder at the interfaces — where non-aligned polarized particles are forced to mix with each other* What if gravity is an emergent property that is trying to optimize the entropy emerging out of spin aligned quantum bits
Back
Top