Proving Linear Filtering of Gaussian Process Still Gaussian

AI Thread Summary
The discussion centers on proving that the output of linear filtering a Gaussian process remains Gaussian. A Gaussian process is defined such that any finite collection of its values is jointly Gaussian. Linear filtering involves convolving the process with a function, resulting in an output that needs to be shown as jointly Gaussian for any set of time points. While intuitively, a Gaussian random variable remains Gaussian after linear filtering, establishing this for a Gaussian process is more complex. The participants suggest that discretizing the integral in the definition of the output could provide insight, as it forms linear combinations of jointly Gaussian variables, but acknowledge that a formal proof may be technically challenging.
chingkui
Messages
178
Reaction score
2
How to prove the output of Linear Filtering a Gaussian Process is still Gaussian? It has been stated in many books I read, but none of them actually prove it. One even stated that "The technical mechinery to prove this property is beyond the scope of this book..."
By definition, a Gaussian process is a function x such that for any finite integer k, and for any arbitary time t1, t2, ..., tk, that x(t1), x(t2), ..., x(tk) are jointly Gaussian RV.
To linear filter the process x(t) means just to convolute it with a function h(t), i.e., the output y(t)=h(t)*x(t)=integrate(h(t-s)x(s)ds)
To prove the statement is to prove that for any m>0, and any time t1,..., tm, that y(t1),...,y(tm) are jointly Gaussian.
Is it that difficult to prove? What does one need to prove it?
It is quite obvious that a Gaussian RV remains Gaussian after linear filtering it, but for a Gaussian process, I am not sure what to use to prove that. Does anyone know how? Thanks.
 
Physics news on Phys.org
I suspect that the a formal proof will be quite technical. However, to understand it intuitively, one may try to discretise the integral in the definition of y(t). The decretised integral is a linear combination of jointly Gaussian variables, and is therefore Gaussian. Each of the y(ti) can be discretised this way, and each is a linear combination of a set of jointly Gaussian variables, and {y(ti)} is therefore jointly Gaussian.

Of course this is far from being a proof. But I think this theorem belongs to the category where it can be easily understood but not easily proved.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top