tetraquarks
The lightest potential members of the base scalar nonet, a0(980) and f0(980), have also been theorized as being tetraquarks or bound KKbar states. X(3872) is well above the DDbar threshold, after all. Ds+Ds- could be a possibility at that level, but DD* would be at 3871.2 MeV. That's just beautifully exact. Hope to hear about its quantum numbers soon, it would make great sense if it ends up being a scalar... no, never mind that (I would edit that part out, but that's too much momentary stupidity to just erase without feeling dishonest). If it is a DD* composite, and decays into pi+pi- + J/psi, then it has to be a vector particle. I'd be willing to bet (if I was a betting man) that its quantum numbers turn out to be either 0-(1--) or 1+(1--), the latter being rather unlikely. If the former, then it will probably be redesignated psi(3872) some time in the near future.
This brings up the decay mode there. B+ --> K+ + pi+pi- + J/psi with pi+pi- + J/psi coming from X(3872) decay. If X(3872) is indeed a bound DD* state coming from B+ (composite of u + -b), then it should follow the currently known models for B-decay into D-mesons, which are via b --> c + -u + d and b --> c + -c + s. The latter could account for the production of the K+ and a DD* bound state as long as an extra up/anti-up quark pair can be added into the decay. This gives u + -b --> (u + -s) + (c + -u + -c + u), which is B+ --> K+ + X(3872), leading to K+ + pi+pi- + J/psi. *(Just a note here, I had previously made a very dumb remark on how this transition could happen via a flavor-changing neutral current; after some thought I realized it was blatently wrong, and so I edited it out.)
As for theta+(1540), I can kind of see the K+N idea, but adding in the pion on top of that has got to be really tricky. Pions are so common in many kinds of light meson decay. So anyway, since its a stranged particle would it temporarily fall under the category of strange mesons when it hits the Particle Listings of the PDG in 2004?