Ulysees said:
It is clear the double slit experiment demonstrates the form of a wavefunction, but it is not obvious at all that it demonstrates collapse because the same fringes or lack of them could be observed with sea waves entering a naval port.
This is the reason why this experiment's results are so fascinating. Yes, sea waves through a naval port would give the same interference pattern. When you talk about sea waves, you are talking about pure waves propagating through a medium. The double slit experiment was done first with photons, and later electrons. Photons and Electrons, for all previous intents and purposes, behaved as particles - they should not behave in the same way a classical wave behaves - yet under certain circumstances they do. The basis of classical physics was based on waves and particles, however now in quantum mechanics we see another form of behavior, which is a particle-wave duality (a poor name, as this is not a mix of particles and waves, it's something completely different. you don't call the color purple "blue-red duality".)
When we are talking about the "Wave Function" we are talking about Schrodinger's Wave Equation, which applies to particles (photons, electrons, etc) NOT regular sea waves. Sea waves through a naval port do not have a probability function. Also, keep in mind that this wave equation applies even when a single particle is put through the the slits. It gives the
probability of where the particle will land.
So it seems that only dots demonstrate collapse. And if they have a statistical pattern, then they demonstrate the likely presence of the same wavefunction for all particles detected.
If by "dots" you mean particles, then yes. What the wave function is doing is giving probabilites about a particle. Over a long amount of time, and when many particles are involved, we are going to see an interference pattern similar to regular water waves. The point is that for each particle going through the slits, we can not with 100% accuracy predict where it will strike the wall. The probability of course is given by the wave function.
Any thought as to what is going on at dots and they are so big? The photographs from wikipedia I posted, might be showing square pixels on the grid of some sort of camera, not round dots on a continuous medium.
Are you talking about why the "dots" that appear on the screen after being hit with a particle are not the size of the particle itself, and why we can see them with the naked eye? It has to be enlarged so we can see it. This is the same logic as thinking that billboards are photographs of giant 80 ft. human beings.