Help Design a Human-Powered Helicopter


by jzvonek
Tags: design, helicopter, humanpowered
Cyrus
Cyrus is offline
#37
Nov24-09, 11:10 PM
Cyrus's Avatar
P: 4,780
I've read every paper on this subject and will be happy to answer any questions. I will say this, it's certainly possible, but you walk a very fine line. I see a lot of misinformation being stated in this thread.

Fred, PM me your email address. I can't send you pms because you have it turned off.
Mech_Engineer
Mech_Engineer is offline
#38
Nov25-09, 08:59 AM
Sci Advisor
PF Gold
Mech_Engineer's Avatar
P: 2,234
It seems to me that for a helicopter to achieve free flight (outside of the ground effect) it needs to push enough air down to have sufficient mass flow to maintain altitude. Based on the power requirements of other helicopters which are engine powered, it would have to have more than 10 horsepower available, far more than any bicyclist can achieve.

Edit- any 130-lb bicyclist anyway. Weight is the #1 killer on these things.
Cyrus
Cyrus is offline
#39
Nov25-09, 10:50 AM
Cyrus's Avatar
P: 4,780
Quote Quote by Mech_Engineer View Post
It seems to me that for a helicopter to achieve free flight (outside of the ground effect) it needs to push enough air down to have sufficient mass flow to maintain altitude. Based on the power requirements of other helicopters which are engine powered, it would have to have more than 10 horsepower available, far more than any bicyclist can achieve.

Edit- any 130-lb bicyclist anyway. Weight is the #1 killer on these things.
No, this is wrong and not based on any sort of calculation. Run the numbers and you will find you are off by an order of magnitude.

You are about right on the weight of the cyclist though.
BenchTop
BenchTop is offline
#40
Nov25-09, 07:41 PM
P: 40
Do the rules prohibit offsetting the load with, say, lighter than air wings?
Cyrus
Cyrus is offline
#41
Nov25-09, 08:46 PM
Cyrus's Avatar
P: 4,780
Quote Quote by BenchTop View Post
Do the rules prohibit offsetting the load with, say, lighter than air wings?
Lighter than air construction, and energy storage devices are explicitly prohibited. Check out the www.vtol.org website for the official rules, which goes over everything in detail.
Cyrus
Cyrus is offline
#42
Nov25-09, 08:49 PM
Cyrus's Avatar
P: 4,780
Quote Quote by russ_watters View Post
After looking at the rules, I believe the contest is doable. It only says you need to momentarily exceed 3 meters and total hover time is only 1 min. A cyclist can put out a lot more power for 1 min than s/he can for three hours.

Just keep in mind, this is nowhere close to the achievment of the Gossamer Albatross, which actually had sustained, controllable flight for close to 3 hours. This "helicpoter" prize seems pretty pointless to me.
Then you need to study helicopters so you wont make such a naive statement! This is, in fact, harder, than a human powered airplane. McCready said so himself - if you don't know who he is Google him.
Phrak
Phrak is offline
#43
Nov25-09, 10:33 PM
P: 4,513
I had a thought (beware)...

A lot of stuctural weight is required to support the pilot in the middle.



Now, it's well established by the Gossamer Albatross that a single Bryan Allen can power a plane over a comparatively long time span in straight and level flight. Flying in circles would require a bit more work, but over a shorter span of time.

Four of these things,



tethered to fly in a circle, mutually constrained by relatively light weight struts and cables, and powered by four Bryan Allens would be capable of achieving the desired result.

The craft should have an overall diameter of about 400 feet. That would take a big gymnasium.
Phrak
Phrak is offline
#44
Nov25-09, 11:01 PM
P: 4,513
Useless facts. The largest hanger in the world wouldn't be enough.

http://www.distant.ca/UselessFacts/fact.asp?ID=165

"CargoLifter hangar, located in Brand, Germany (60 kilometres south of Berlin) on a former Soviet military airport, is the largest self-supporting hangar in the world. With 360-meters in length, 210-meters in width and 107-meters in height the hanger was designed to accommodate the planned CargoLifter CL 160, a 260-meter long airship."

Self propelled helicoptering should be an outdoor sport.
Cyrus
Cyrus is offline
#45
Nov25-09, 11:29 PM
Cyrus's Avatar
P: 4,780
Quote Quote by Phrak View Post
Useless facts. The largest hanger in the world wouldn't be enough.

http://www.distant.ca/UselessFacts/fact.asp?ID=165

"CargoLifter hangar, located in Brand, Germany (60 kilometres south of Berlin) on a former Soviet military airport, is the largest self-supporting hangar in the world. With 360-meters in length, 210-meters in width and 107-meters in height the hanger was designed to accommodate the planned CargoLifter CL 160, a 260-meter long airship."

Self propelled helicoptering should be an outdoor sport.
Provided you have very calm winds, yes. Large indoor areas pose problems because the circulation of the air inside the (Gymnasium!) as a result of the induced velocity will cause the rotorcraft to inevitable drift outside the limits of the (10?) meter box.
Phrak
Phrak is offline
#46
Nov26-09, 01:50 AM
P: 4,513
Quote Quote by Cyrus View Post
Provided you have very calm winds, yes. Large indoor areas pose problems because the circulation of the air inside the (Gymnasium!) as a result of the induced velocity will cause the rotorcraft to inevitable drift outside the limits of the (10?) meter box.
It may be moot, since the widest indoor flat area I could find was about 260 meters, but I'm not following. The helicopter will induce some toroidal flow of air--up on the outside, and down in the middle. Will off-center cause positive feedback to draw it further off-center?
Mech_Engineer
Mech_Engineer is offline
#47
Nov27-09, 02:49 PM
Sci Advisor
PF Gold
Mech_Engineer's Avatar
P: 2,234
Quote Quote by Cyrus View Post
No, this is wrong and not based on any sort of calculation. Run the numbers and you will find you are off by an order of magnitude.

You are about right on the weight of the cyclist though.
What formulas should I be using to calculate the required power for a helicopter?

I looked at it from a thrust standpoint, and used the weight of the DaVinci III as a guide for human-powered helicopter dimensions. With a weight of 227 pounds, and an induced wind velocity of 35 mi/hr (I just guessed at this, the DaVinci III report had no specs), you have to push 142 lb/s of air for a total of 111,600 cfm, and that works out to 10.5 horsepower required to gain stable flight outside of the ground effect.
Cyrus
Cyrus is offline
#48
Nov27-09, 04:39 PM
Cyrus's Avatar
P: 4,780
Quote Quote by Mech_Engineer View Post
What formulas should I be using to calculate the required power for a helicopter?

I looked at it from a thrust standpoint, and used the weight of the DaVinci III as a guide for human-powered helicopter dimensions. With a weight of 227 pounds, and an induced wind velocity of 35 mi/hr (I just guessed at this, the DaVinci III report had no specs), you have to push 142 lb/s of air for a total of 111,600 cfm, and that works out to 10.5 horsepower required to gain stable flight outside of the ground effect.
You should write and run a BEMT code. I have no idea where your ad-hoc numbers come from. As a first order analysis, you could just use momentum theory itself (which does not require any code).

[tex]P = T^{3/2}/\sqrt{2\rho A} [/tex]

Using R = 50' and T = 227lb, the power is 559.59 (whatever units it is fl-lb/s, or something...) or about 1.01 HP. This is obviously a first order analysis and one would have to use BEMT for better estimates at HOGE. An order of magnitude less than your estimate! (And we have not even gotten into any of the actual hard technical challenges!)
russ_watters
russ_watters is offline
#49
Nov27-09, 06:50 PM
Mentor
P: 22,000
Quote Quote by Cyrus View Post
Then you need to study helicopters so you wont make such a naive statement! This is, in fact, harder, than a human powered airplane.
You misunderstood my point. I know it is harder than a human powered airplane - and that's why they have to make the prize for such a small achievement.

In other words, you can't fly this thing across the English Channel.
Cyrus
Cyrus is offline
#50
Nov27-09, 07:27 PM
Cyrus's Avatar
P: 4,780
Quote Quote by russ_watters View Post
You misunderstood my point. I know it is harder than a human powered airplane - and that's why they have to make the prize for such a small achievement.

In other words, you can't fly this thing across the English Channel.
My bad. You would have a hell of a time flying this thing even in a straight line! The power requirements are horrible, and the rotation of the blades mean the stresses quickly kill you, because things have to be build bulkier. It's a hell of a problem compared to the human powered airplane (HPA).
Phrak
Phrak is offline
#51
Nov27-09, 08:22 PM
P: 4,513
Momentum theory

Blade element theory
Phrak
Phrak is offline
#52
Nov27-09, 08:45 PM
P: 4,513
My hopes are dashed (see my post #43) by the following outlandish rule...

http://www.vtol.org/awards/hphregs.html#4.
4.1.2 The machine shall be a rotary wing configuration capable of vertical takeoff and landing in still air, and at least one member of the crew shall be non-rotating.
Or...I will require a freshly made, newborn volunteer, as light in weight as possible, to function as the fifth crew member, suspended in a non rotating, centrally located bassinette.
Phrak
Phrak is offline
#53
Nov27-09, 10:22 PM
P: 4,513
After more internet searching than I expected in order to circumvent infant labor laws, I discovered that the "world's smallest midget" is 28 inches tall. With some proportional comparison, this yields a nominal body weight of 18 pounds. Erroring on the conservative side, I expect to obtain the services of a 25 pound dwarf to provide the requisite fifth, non-rotating crew member.

After providing for a crash cage and mechanism to provide non-rotation of the central crew member plus the supporting cables, the central mass should weigh an effective 50 pounds. With four cables tensioned at 200 pounds apiece running to each Condor pilot's center of lift, the fifth pilot should be suspended at an altitude of 1/16th the flight radius below each Condor's lifting surface.

After some back of the envelope considerations, the flight radius of each Condor should be about 400 feet. This implied that the fifth pilot will be suspended 25 feet below the lifting blades.

To meet the requirement:
4.4.1 The flight requirements shall consist of hovering for one minute while maintaining flight within a 10-meter square. During this time the lowest part of the machine shall exceed momentarily 3 meters above the ground.
the blades will be required to obtain 35 feet of altitude + 3 feet of suspended fifth pilot = 38 feet. This is within some small ground effect for each Condor (wingspan of 100 ft.).

The overall diameter of the Helicopter will be about 900 ft.
Phrak
Phrak is offline
#54
Nov27-09, 10:56 PM
P: 4,513
Will each Condor provide the centrifugal force necessary to tension the cables to the 5th crew member?

Each Condor will obtain about 25 feet per second, based upon the information from Wikipedia.

Using

[tex]v^2 = ar[/tex]

were v =25 feet per second
and r = 400 feet

The centripital acceleration of each Condor will be 1.6 foot pounds per sec2. The mass of each Condor will be about 32 Kg plus pilot (wikipedia reference, again).

After some calculations, each Condor is capable of providing only 10 pounds of radial force to hold up the fifth crew member. This is unacceptable.

Ideas anyone?


Register to reply

Related Discussions
design a human-powered machine... Introductory Physics Homework 5
Solar Powered Helicopter? Aerospace Engineering 31
Human powered circumnavigation Earth 0
Human powered still - Nichrome wire Electrical Engineering 6