A proton is 3 quarks held together by a lot of glue, most of the time. These virtual gluons can split into virtual quarks, so the proton is really in a superposition of quantum states with an odd number of quarks (because the proton is itself a fermion, it must be composed of an odd number of fermions). This is an important consequence of the fact that the strong interactions are so strong: the quantum states describing free particles are not solutions to the interacting theory. So bound states are complicated superpositions of the free particle states, but the proton is distinguished as the lowest energy configuration with its particular quantum numbers. The excited states of the proton are identified with unstable resonances, as you can find in tables: http://pdglive.lbl.gov/listing.brl?fsizein=1&exp=Y&group=BXXX005 Resonances of the same mass and quantum numbers are, as far as we know, identical particles.
The relevant representation theory is that of SU(3) flavor, which is the so-called "eightfold way." The flavor symmetry is broken by the differing quark masses, but the qualitative picture is nonetheless useful.