Conservation of Angular Kinetic Energy

AI Thread Summary
The discussion centers on the conservation of kinetic energy in a problem involving a disk and a stick on frictionless ice. The confusion arises from whether the disk should be considered as having rotational kinetic energy in addition to translational kinetic energy. It is clarified that the problem does not specify the disk is rotating, suggesting it is sliding like a hockey puck, thus only translational kinetic energy is relevant. The moment of inertia of the disk cannot be determined without its radius, reinforcing the decision to exclude its angular kinetic energy from the calculations. This highlights the importance of clearly understanding the conditions of the problem when applying conservation principles.
roam
Messages
1,265
Reaction score
12

Homework Statement



I have some difficulty understanding how they have obtained the equation for conservation of kinetic energy in the following solved problem:

There is a 2 kg disk traveling at 3.0 m/s strikes a 1.0 kg stick of length 4.0 m that is lying flat on nearly frictionless ice. The disk strikes the endpoint of the stick, at a distance r = 2.0 m from the stick's center. Suppose the collision is elastic and the disk does not deviate from its original line of motion. The moment of inertia of the stick about its center of mass is 1.33 kg.m2. If we apply the conservation of kinetic energy to the system we get:

\frac{1}{2}m_d v_{d i}^2 = \frac{1}{2}m_d v_{d f}^2 + \frac{1}{2}m_s v_{s}^2 + \frac{1}{2} I \omega^2

\frac{1}{2} (2)(3)^2 = \frac{1}{2}(2) v_{d f}^2 + \frac{1}{2}(1) v_{s}^2 + \frac{1}{2} (1.33) \omega^2

Here is a diagram:

http://desmond.imageshack.us/Himg818/scaled.php?server=818&filename=prob1r.jpg&res=landing

The Attempt at a Solution



I'm confused because the only rotational kinetic energy considered was the rotational kinetic energy of the stick after the collision. But the disk has a rotational kinetic energy too both before and after the collision, right? :confused:

Shouldn't we model the motion of the rolling disk as a combination of both translation and rotation? If so this is what we would get:

\frac{1}{2}m_d v_{d i}^2 + \frac{1}{2}I_{d} \omega_{d, i} = \frac{1}{2}m_d v_{d f}^2 + \frac{1}{2}m_s v_{s}^2 + \frac{1}{2} I_s \omega_{s}^2 + \frac{1}{2}I_{d} \omega_{d, f}

So, why have they ignored the rotational kinetic energy of the disk? Any help is greatly appreciated.
 
Last edited by a moderator:
Physics news on Phys.org
I think the answer is simply that your assumption that the disc is rolling is wrong. It does not say anywhere in the problem that the disc is rotating. It's probably just sliding across the surface of the ice like a hockey puck. Therefore, it has only translational kinetic energy.
 
A simple advice in problems like these - Since the radius of disc was not given, it was not possible to determine the Moment of Inertia of the disc about its centre, so it was safe to assume that we need not consider its angular kinetic energy as far as this problem goes.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top