Euler Bernoulli Beam 4th order ODE -Balance of Units

AI Thread Summary
The discussion focuses on the balance of units in the Euler-Bernoulli beam equation, specifically analyzing the equation's left-hand side (LHS) and right-hand side (RHS) for consistency. The equation involves variables such as the modulus of elasticity (E), second moment of area (I), and deflection (w), leading to a calculation that suggests LHS does not equal RHS. Participants clarify that the second derivatives in the equation indeed have units of 1/m², which is derived from the definition of derivatives in calculus. The conversation emphasizes the importance of understanding unit analysis in the context of differential equations. Ultimately, the mathematical reasoning behind the units of derivatives is reaffirmed as a fundamental concept in calculus.
bugatti79
Messages
786
Reaction score
4
Folks,

I am trying to understand the balance of units for this eqn

## \displaystyle \frac{d^2}{dx^2}(E(x)I(x) \frac{d^2 w(x)}{dx^2})+c_f(x)w(x)=q(x)##

where ##E## is the modulus of Elasticity, ##I## is the second moment of area, ##c_f## is the elastic foundation modulus, ##w## is deflection and ##q## is the distributed transverse load.

Based on the above I calculate the units to be

## \displaystyle \frac{d^2}{dx^2}[\frac{N}{m^2} m^4 \frac{d^2 m}{dx^2}]+\frac{N}{m^2} m=\frac{N}{m}##

gives

##\displaystyle {Nm^3} +\frac{N}{m}=\frac{N}{m}##

##LHS \ne RHS##...?
 
Mathematics news on Phys.org
The derivatives ##\frac{d^2}{dx^2}## have units of ##1/m^2##.
 
Mute said:
The derivatives ##\frac{d^2}{dx^2}## have units of ##1/m^2##.

Ok, I see how they balance now. The question I have is how is this shown mathematically that the 2nd derivatives have ##1/m^2## units?

##f(x)= f(units in meters)##
##f'(x)= f(units in meters)##
##f''(x)= f(units in meters)##...?
 
df/dx is defined as \lim_{h\to 0} (f(x+h)- f(x))/h. The numerator is in what ever units h has. The denominator is in whatever unis x has- "meters" in your case- so the derivative has the units of f divided by the units of x and the second derivative has units of units of f divided by the units of x, squared.

Surely you learned this in basic Calculus? if f(t) is a distance function, with units "meters" and t is time, in "seconds", then df/dt is a speed with units "meters per second" and d2f/dt2 is an acceleration with units of "meters per second squared".
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top