Turn a sinusoid into a elliptic orbit

  • Thread starter Thread starter Philosophaie
  • Start date Start date
  • Tags Tags
    Orbit
AI Thread Summary
The discussion revolves around converting sinusoidal equations into elliptical orbits, with a focus on the validity of the provided equations. Participants emphasize that gravity acts as a central force, necessitating the application of Newton's Laws to derive accurate orbital equations. It is noted that the initial equations presented are incorrect due to the assumption of constant acceleration, which does not apply to orbiting bodies. The conversation highlights the importance of using Kepler's laws and proper boundary conditions to derive the correct orbital parameters. Ultimately, the consensus is that a more rigorous approach is needed to accurately model elliptical orbits.
Philosophaie
Messages
456
Reaction score
0
I am trying to get my head around these equations. I am not sure they are correct. My logic is an orbit exists at a starting point (x0,y0,z0) with a starting velocity at time zero (vx0,vy0,vz0) changing with time (dx/dt, dy/dt, dz/dt). The gravity is (d^2x/dt^2, d^2y/dt^2, d^2z/dt^2). How do you turn a sinusoid into a elliptic orbit?

x = (-1 / 2 * G * M / r ^ 2 * Cos(h) * Cos(p)) * t ^ 2 + vx0 * t + x0
y = (-1 / 2 * G * M / r ^ 2 * Sin(h) * Cos(p)) * t ^ 2 + vy0 * t + y0
z = (-1 / 2 * G * M / r ^ 2 * Sin(p)) * t ^ 2 + vz0 * t + z0

where
r=(x^2+y^2+z^2)^0.5
h=atan(y/x)
p=acos(z/r)
 
Last edited:
Astronomy news on Phys.org
Philosophaie said:
I am trying to get my head around these equations. I am not sure they are correct. My logic is an orbit exists at a starting point (x0,y0,z0) with a starting velocity at time zero (vx0,vy0,vz0) changing with time (dx/dt, dy/dt, dz/dt). The gravity is (d^2x/dt^2, d^2y/dt^2, d^2z/dt^2). How do you turn a sinusoid into a elliptic orbit?
The sinusoids parameterise the ellipse.
You know how this works if the plane of the orbit is the x-y plane right?

However, I think you have been too general in your setup.
Gravity is usually a central force - always directed to some point - with a magnitude that depends on the distance to that center. You write that down and apply Newton's Laws. There are several possible shapes - the stable ellipse is usually quite tricky to hit on by trail and error.
 
Which is the correct postulation in Newtonian 2 Body solution:

h=atan(y/x)
p=acos(z/r)

or

h=atan(vy/vx)
p=acos(vz/vr)

where

vr = (vx^2+vy^2+vz^2)^0.5
 
Depends what you want h and p to represent.
The former are the angles to the position and the second to the velocity.
They do not appear to represent any kind of postulates, and are not specific to the two-body problem.
 
Philosophaie said:
I am trying to get my head around these equations. I am not sure they are correct. My logic is an orbit exists at a starting point (x0,y0,z0) with a starting velocity at time zero (vx0,vy0,vz0) changing with time (dx/dt, dy/dt, dz/dt). The gravity is (d^2x/dt^2, d^2y/dt^2, d^2z/dt^2). How do you turn a sinusoid into a elliptic orbit?

x = (-1 / 2 * G * M / r ^ 2 * Cos(h) * Cos(p)) * t ^ 2 + vx0 * t + x0
y = (-1 / 2 * G * M / r ^ 2 * Sin(h) * Cos(p)) * t ^ 2 + vy0 * t + y0
z = (-1 / 2 * G * M / r ^ 2 * Sin(p)) * t ^ 2 + vz0 * t + z0

where
r=(x^2+y^2+z^2)^0.5
h=atan(y/x)
p=acos(z/r)
This is incorrect. ##\vec x(t) = \frac 1 2 \vec a\,t^2 + \vec v_0\,t + \vec x_0## is only valid for constant acceleration. The equation you used does not apply to an orbiting body because the acceleration of an orbiting body is not constant.
Philosophaie said:
Which is the correct postulation in Newtonian 2 Body solution:

h=atan(y/x)
p=acos(z/r)

or

h=atan(vy/vx)
p=acos(vz/vr)

where

vr = (vx^2+vy^2+vz^2)^0.5
Neither one.

The correct solution was found by Kepler. Why do you persist in avoiding that solution?
 
Philosophaie said:
I am not sure they are correct.
They are not correct.
 
Then how do you find the equations for x,y,z, xdot, ydot, zdot, rdot thetadot, phidot, xdoubledot, ydoubledot, zdoubledot, rdoubledot, thetadoubledot, and phidoubledot with non-uniform acceleration?
 
Last edited:
Start with a free-body diagram and apply Newton's Laws - applying boundary conditions.

From post #2:
Gravity is usually a central force - always directed to some point - with a magnitude that depends on the distance to that center. You write that down and apply Newton's Laws. There are several possible shapes - the stable ellipse is usually quite tricky to hit on by trail and error.
 

Similar threads

Replies
4
Views
2K
Replies
3
Views
2K
Replies
10
Views
6K
Replies
10
Views
1K
Replies
14
Views
2K
Replies
6
Views
338
Back
Top