Why Do Different Prime Number Variations Occur in Equal Frequencies?

  • Thread starter Thread starter Bob3141592
  • Start date Start date
  • Tags Tags
    Primes
AI Thread Summary
A program was developed to generate and analyze prime numbers, revealing interesting patterns among different prime variations. The counts of twin primes (58,047,180) and cousin primes (58,040,263) are nearly identical, while sexy primes total 116,076,313, roughly double the previous counts. Further analysis showed similar counts for primes differing by 8 and 10, with a notable increase for those differing by 12. This behavior aligns with the Hardy-Littlewood conjecture, suggesting a statistical basis rather than mere chance. The exploration into prime variations continues, highlighting the complexity of prime distribution.
Bob3141592
Messages
236
Reaction score
2
As a programming exercise I wrote a program to generate primes. First I generated a billion of them (the one billionth prime is 22,801,763,489). My program also scans through these numbers for Twin primes (adjacent primes that differ by two), cousin primes (adjacent primes that differ by four) and sexy primes (primes that differ by six and don't have to be adjacent). There are 58,047,180 twin primes among the first billion, and 58,040,263 cousin primes in that same range. Almost the same number. I supposed that that count would hold no matter what the difference between the primes was, so I was surprised to see 116,076,313 sexy primes, almost exactly twice the previous counts. I extended the program to look for other differences, and found 58,044,163 primes that differ by 8, very similar to the count of twins and cousins. But then there were 77,387,551 primes that differ by 10, and 116,089,533 primes that differ by 12, very similar to the sexy count.

I'll be looking for primes with other differences, but the program takes its time.

Is there a reason for this behavior, or is it just statistical variations?
 
Mathematics news on Phys.org
Bob3141592 said:
There are 58,047,180 twin primes among the first billion, and 58,040,263 cousin primes in that same range.

This is already a known conjecture. But it has not yet been proven that it always holds. It follows from the first Hardy-Littlewood conjecture: http://mathworld.wolfram.com/k-TupleConjecture.html
The rest of your numbers also follow from it.
 
Last edited:
Bob3141592 said:
As a programming exercise I wrote a program to generate primes. First I generated a billion of them (the one billionth prime is 22,801,763,489). My program also scans through these numbers for Twin primes (adjacent primes that differ by two), cousin primes (adjacent primes that differ by four) and sexy primes (primes that differ by six and don't have to be adjacent). There are 58,047,180 twin primes among the first billion, and 58,040,263 cousin primes in that same range. Almost the same number. I supposed that that count would hold no matter what the difference between the primes was
Why would you suppose that? It would seem reasonable to me that, since the larger x_1 is the more primes there are to be divisors of numbers, the larger x_1 is, the fewer primes there would be between x_1 and x_2 for a fixed x_2- x_1.

, so I was surprised to see 116,076,313 sexy primes, almost exactly twice the previous counts. I extended the program to look for other differences, and found 58,044,163 primes that differ by 8, very similar to the count of twins and cousins. But then there were 77,387,551 primes that differ by 10, and 116,089,533 primes that differ by 12, very similar to the sexy count.

I'll be looking for primes with other differences, but the program takes its time.

Is there a reason for this behavior, or is it just statistical variations?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
2K
Replies
7
Views
3K
Replies
13
Views
3K
Replies
5
Views
4K
Replies
4
Views
3K
Replies
2
Views
2K
Replies
1
Views
4K
Back
Top