Register to reply

Radius of a star

by Brewer
Tags: radius, star
Share this thread:
Brewer
#1
May25-06, 10:53 AM
P: 230
How do I go about working out the radius of a star when I have the bolometric flux, the wavelength of the peak flux of its spectrum, and its parallax?

I've also calculated the temperature of its photosphere (Wein's law right?).

Or is it more to do with the parallax?
Phys.Org News Partner Science news on Phys.org
New model helps explain how provisions promote or reduce wildlife disease
Stress can make hard-working mongooses less likely to help in the future
Grammatical habits in written English reveal linguistic features of non-native speakers' languages
SpaceTiger
#2
May25-06, 01:58 PM
Emeritus
Sci Advisor
PF Gold
SpaceTiger's Avatar
P: 2,977
Quote Quote by Brewer
I've also calculated the temperature of its photosphere (Wein's law right?).
How does a blackbody's temperature relate to its area and luminosity?


Or is it more to do with the parallax?
What quantity does a parallax give you? How might you use this to derive a luminosity from a flux?
Brewer
#3
May25-06, 02:03 PM
P: 230
I haven't touched on luminosity for this question, as it asks for that in the next part (and I know how to get that).

As I understand it, radius of the star is d*tanP where d is the distance to the star, and P is the parallax. Is [tex]10^11[/tex] the correct order of magnitude for a star do you think? Its bigger than the sun, but its not overly huge for a star is it?

lightgrav
#4
May25-06, 10:35 PM
HW Helper
PF Gold
lightgrav's Avatar
P: 1,124
Radius of a star

you have its parallax? so it must be fairly close ... right?
that means it should appear fairly bright ... right?
Temperature determines how much light is emitted by each sq. meter of surface - not how much light comes off the entire surface.

Do you know how these are related?
SpaceTiger
#5
May26-06, 01:00 PM
Emeritus
Sci Advisor
PF Gold
SpaceTiger's Avatar
P: 2,977
Please don't double-post, it's very annoying to those trying to help you.

Quote Quote by Brewer
I haven't touched on luminosity for this question, as it asks for that in the next part (and I know how to get that).
You'll need it for this part.


As I understand it, radius of the star is d*tanP where d is the distance to the star, and P is the parallax. Is [tex]10^11[/tex] the correct order of magnitude for a star do you think? Its bigger than the sun, but its not overly huge for a star is it?
1011 what? Meters?
Brewer
#6
May26-06, 01:02 PM
P: 230
Quote Quote by SpaceTiger
Please don't double-post, it's very annoying to those trying to help you.



You'll need it for this part.




1011 what? Meters?
Yes [tex]10^1^1m[/tex]. Sorry about the double post
SpaceTiger
#7
May26-06, 01:08 PM
Emeritus
Sci Advisor
PF Gold
SpaceTiger's Avatar
P: 2,977
Quote Quote by Brewer
Yes [tex]10^1^1m[/tex].
That's about the distance from the earth to the sun, so it's a bit too close for a star. I just noticed that you were associating the parallax with the radius -- actually, it gives you a distance. The distance, in parsecs, is given by:

[tex]d=\frac{1}{\theta}[/tex]

where [itex]\theta[/itex] is the parallax angle in arcseconds.
Brewer
#8
May26-06, 01:13 PM
P: 230
Is it in metres if you use radians and parsecs if you use it in degress, arcmin and arcsec then?

I've just realised how its done though - distance can be used with the bolometric flux to find the bolometric luminosity. This is turn can be used with [tex] P = \sigma AeT^4[/tex] to find the raduis of the star right?

I'm a little confused how the question was intended to be worked out though - 2 marks for this, and a further two in the next part for writing down something you've already calculated in order to do this question (luminosity).
SpaceTiger
#9
May26-06, 01:20 PM
Emeritus
Sci Advisor
PF Gold
SpaceTiger's Avatar
P: 2,977
Quote Quote by Brewer
Is it in metres if you use radians and parsecs if you use it in degress, arcmin and arcsec then?
More generally, the expression is:

[tex]d=\frac{d_{earth}}{\theta}[/tex]

where [itex]d_{earth}[/itex] is the distance from earth to sun. The expression I gave you is only valid in units in which the angle is in arcseconds and the distance is in parsecs. Use the above expression for meters and radians.


I've just realised how its done though - distance can be used with the bolometric flux to find the bolometric luminosity. This is turn can be used with [tex] P = \sigma AeT^4[/tex] to find the raduis of the star right?
Yep.


Register to reply

Related Discussions
Mass-Radius relation of a Neutron star Astronomy & Astrophysics 3
Mass-Radius relation of a Neutron star Advanced Physics Homework 0
Radius of proton given radius of electron Introductory Physics Homework 2
Is the schwarzchild radius a radius of curvature? Special & General Relativity 9