# Curl of Tensor

by touqra
Tags: curl, tensor
 P: 284 Can we curl a stress tensor? What physically meaning will it be?
 Emeritus Sci Advisor PF Gold P: 10,424 The term "curl" usually applies to vector fields. If there is an equivalent definition of curl for tensor fields, I am not familair with it. - Warren
 Sci Advisor HW Helper PF Gold P: 4,100 Are you referring to an operation like $$\nabla_{[a}T_{b]c$$?
P: 284

## Curl of Tensor

I was thinking of something like Helmholtz's theorem, where if you specify the div and curl of a vector field, you then know everything there is to know about the field.
Maybe there's something similar for rank 2 tensor, like the stress tensor, or higher tensors.
P: 232
 Quote by chroot The term "curl" usually applies to vector fields. If there is an equivalent definition of curl for tensor fields, I am not familair with it. - Warren
Incidentally, the defn of curl resembles the antisymmetrized derivative (F in electromagnetism & the curvature tensor in GR). That's not accidental, is it?
 P: 1 Hi i think that the rotor (curl) of a bilinear tensor T can be defined as follows: let [T] be the matrix associated with T : t11 t12 t13 [T] = t21 t22 t23 t31 t32 t33 interpreting the raws of [T] as vectors T1=t11*e1+t12*e2+t13*e3 => [T1]'=(t11,t12,t13) T2=t21*e1+t22*e2+t23*e3 => [T2]'=(t21,t22,t23) T3=t31*e3+t32*e2+t33*e3 => [T3]'=(t31,t32,t33) we can write [T] as [T1]' [T] = ( [T2]' ) [T3]' then, the rotor (curl) of T is simply : [rotT] = ( [rotT1] , [rotT2] , [rotT3] ) where [rotT1] , [rotT2] , [rotT3] are the column matrix of the rotor (curl) of vectors T1, T2 and T3
P: 21
 Quote by Thrice Incidentally, the defn of curl resembles the antisymmetrized derivative (F in electromagnetism & the curvature tensor in GR). That's not accidental, is it?
Indeed, Thrice, this is not accidental. I am learning much of the nature of axial vectors, curl, and the Minkowski tensor. I need to understand the forms expressed in spherical terms and fields for magnetism.
P: 2,341
 Quote by touqra Can we curl a [second rank] tensor?
There are various things one could mean by this, but yes, there are various ways of generalizing the "curl" from vector calculus. In the context of gtr, one particularly useful formalism involves "curl" and "div" operations on hyperslices using the induced connection in the slice.

 Quote by nike^^ i think that the rotor (curl) of a bilinear tensor T can be defined as follows:
Yes indeed, the Hodge decomposition, which applies to p-forms, generalizes the Helmholtz decomposition. This can be stated in various ways: one statement is that any exterior form on a compact boundaryless Riemannian manifold can be uniquely decomposed (as an orthogonal direct sum) as the sum of an exact form, a coexact form, and a harmonic form: $\beta = d\alpha + \delta \gamma + \eta$, where $\alpha$ is a coclosed (p-1)-form, $\gamma$ is a closed (p+1)-form, and $\eta$ is a harmonic p-form (thus, both closed and coclosed).