Solve Integral & Complex Exponential Problems: Help Needed

AI Thread Summary
The discussion focuses on two challenging homework problems involving integrals and complex exponentials. The first problem requires evaluating the integral of dx(e^ax)cos^2(2bx), with suggestions to use exponential notation for cosine and integration by parts. The second problem involves finding all values of i^(2/3), where the poster has made progress but struggles to match the expected solutions from their textbook. The community offers guidance on tackling the integral and clarifying the exponential calculations. Overall, the thread emphasizes problem-solving strategies for complex mathematical concepts.
Geronimo85
Messages
20
Reaction score
0
I have two homework problems that have been driving me nuts:

1.) evaluate the indefinite integral:

integral(dx(e^ax)cos^2(2bx))

where a and b are real positive constants. I just don't know where to start on it.

2.) Find all values of i^(2/3)

So far I have:

i^(2/3)
= e^(2/3*ln(i))
= e^(2/3*i*(Pi/2 + 2*n*Pi))
= e^(i*Pi/3)*e^(i*n*4Pi/3)

I know from the back of my book my three solutions should end up being (1+i*sqrt(3))/2, (1-i*sqrt(3))/2, -1. But I can't seem to get there. I'd really appreciate any help. Sorry if my shorthand is confusing.
 
Physics news on Phys.org
For 1) use the exponential notation for cos x, then integrate. You can do it by integration by parts twice, then use 'the trick' but that would be pretty messy.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top