Find the location of the CM of a hollow ice cream cone

  • Thread starter Thread starter Tonyt88
  • Start date Start date
  • Tags Tags
    Cone Ice
Tonyt88
Messages
62
Reaction score
0
Find the location of the CM of a hollow ice cream cone, with base radius R and height h, and uniform mass denisty. How does your answer change if the cone is solid, instead of hollow?

Okay, so I'm pretty sure that I need to work with slices, and that you need the mass which I believe is [where sigma is density]

σ ( (pi) r^2 + (pi) r √r2 + h2)

Though I don't know where to go from here
 
Physics news on Phys.org
Nm, I think I got it, I have:

[h^2]/[(3)(R+sqrt(R^2 + H^2))]

and for the filled cone:

h/4
 
\vec{R}_{CM}=\frac{\int_A\sigma\vec{r}dA}{\int_A\sigma dA}

Notice that the angle that the cone makes with its symetry axis is \tan\theta=R/h. I leave it to you to evaluate the integrals.
 
Tonyt88 said:
Nm, I think I got it, I have:

[h^2]/[(3)(R+sqrt(R^2 + H^2))]

and for the filled cone:

h/4
The first one looks far too complicated. What is H anyway? Is that where the CM is located? The filled cone looks good.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top