Any help with the following question would be appreciated. Please keep in mind that i'm not very good with physics.

"A circus trapeze consists of a bar suspended by two parallel ropes, each of length l, allowing performers to swing in a vertical circular arc. Suppose a performer with a mass m holds the bar and steps off an elevated platform, starting from rest with the ropes at an angle theta_i with respect to the vertical. Suppose the size of the performer's body is small compared to the length l, she does not pump the trapeze to swing higher, and air resistance is negigable.
A) Show that when the ropes make an angle theta with the vertical, the preformer must exert a force: mg(3 cos theta - 2 cos theta_1), so as to hang on.
B) Determine the angle theta_i for which the force needed to hang on at the bottom of the swing is twice the preformer's weight."

*I tried to attach a picture. Its not very good though, because I had to draw it*

I don't know how to approach the question but, my first question would be where is angle theta_i ?
 PhysOrg.com science news on PhysOrg.com >> King Richard III found in 'untidy lozenge-shaped grave'>> Google Drive sports new view and scan enhancements>> Researcher admits mistakes in stem cell study

Recognitions:
Gold Member
Homework Help