Expectation of an Hermitian operator is real.

noospace
Messages
69
Reaction score
0

Homework Statement



WTS \langle \hat{A} \rangle = \langle \hat{A} \rangle^\ast

The Attempt at a Solution



\langle \hat{A} \rangle^\ast = \left(\int \phi_l^\ast \hat{A} \phi_m dx\right)^\ast=\left(\int (\hat{A}\phi_l)^\ast \phi_m dx\right)^\ast= \int \phi_m^\ast \hat{A}\phi_l dx. So far, I haven't seen why this equals \int \phi_l^\ast \hat{A} \phi_m dx.

Thanks
 
Physics news on Phys.org
use same fields to show
eg. (\Psi, A\Psi) = (\Psi, A\Psi)^*
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top